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Abstract

A framework is described for the development of a thermodynamically consistent plastic directional-damage-contact
model for concrete. This framework is used as a basis for a new model, named Craft, which uses planes of degradation
that can undergo damage and separation but which can regain contact according to a contact state function. The
thermodynamic validity of the resulting model is considered in detail, and is proved for certain cases and demonstrated
numerically for others. The model has a fully integrated plasticity component that uses a smooth triaxial yield surface
and frictional hardening-softening functions. A new type of consistency condition is introduced for simultaneously
maintaining both local and global constitutive relationships as well as stress transformation relationships. The intro-
duction of contact theory provides the model with the ability to simulate the type of delayed aggregate interlock be-
havior exhibited by fully open crack surfaces that subsequently undergo significant shear movement. The model has
been implemented in a constitutive driver program as well as a finite element program. The model is assessed against a
range of experimental data, which includes data from uniaxial tension tests with and without unloading-reloading
cycles, tests in which cracks are formed and then loaded in shear, and uniaxial, biaxial and triaxial compression tests.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerical modeling of concrete is a mature discipline with a history that spans more than three decades,
during which time considerable advances have been made in both the underlying theories of the constitutive
models as well as in the practical capabilities of finite and boundary element codes for concrete analysis.
Given the vast body of literature produced on this subject, the need for further contributions could be
reasonably questioned. However, since research on the subject has not yet resulted in a model, or set of
models, which is able to represent the complete range of concrete characteristic behavior in a consistent and
robust manner, the author believes that present and future strivings towards the goal of a comprehensive
and robust set of numerical models for concrete are, and will be for some time to come, justified.
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During the period referred to there have been two particular state-of-the-art reviews that have described
many of the key developments up to their date of publication (ASCE, 1982; ACI, 1998). Included in these
reviews are descriptions of a class of model that received much attention in the 1970s and 1980s (Buyu-
kozturk, 1977; Owen et al., 1983; de Borst, 1986; Cervera et al., 1987). These models, which will be termed
here ‘plastic-cracking’, used plasticity theory to represent the compressive behavior of concrete and various
total and incremental fracture theories to simulate directional cracking on defined planes. There was
considerable variation in the plasticity and fracture components of these models, although the underlying
principles were similar. The approaches used to model cracking—which included the fixed crack, rotating
crack and multi-non-orthogonal fixed crack methods—have been reviewed in two publications (Weihe
et al., 1998; Petrangeli and Ozbolt, 1996). This type of plastic-cracking model is appealing for a number of
reasons; firstly, the behavior of concrete in compression is naturally and accurately simulated with plasticity
theory. This is because, for a wide range of uniaxial, biaxial and triaxial stress/strain paths, the inelastic
strains are permanent and therefore the unloading behavior is substantially elastic, and the behavior is
thereby in agreement with the assumptions of standard plasticity theory. This observation is borne out by
the data and simulations of Este and Willam (1994). Secondly, regarding crack modeling, the simulation of
directional cracking as strength loss on defined planes agrees with macroscopic observations of crack
formation. Furthermore, the author would contend that the approach is also reasonable for simulating the
behavior observed during tensile micro-cracking, as, for example, seen in micro-imaging studies reported by
van Mier (1997) and Karihaloo and Jefferson (2001), although it is recognized that because the model is
phenomenological in nature, and not based on the micro-structure of the material, it will only simulate the
macroscopic effects of micro-cracking in an approximate manner. These earlier models were in various
ways flawed. The fixed crack approach produced over stiff results and relies on a somewhat arbitrary shear
retention factor (Crisfield and Wills, 1989). The rotating crack model can not simulate post crack shear
response on a crack plane and also relies on the questionable device of computing Poisson’s ratio from
current stress and strain components such that the coaxiality of the principal stresses and strains is
maintained (Rots, 1988; Petrangeli and Ozbolt, 1996; Feenstra and de Borst, 1995). The disadvantages of
the multiple non-orthogonal crack theory, which is in many respects the most appealing of the approaches,
have been summarized by Feenstra and de Borst (1995). These disadvantages relate to the computational
and algorithmic difficulties associated with combining plasticity and fracture and the problems of simu-
lating state changes, e.g. crack closure.

None of the models referred to above were explicitly developed within thermodynamically consistent
theoretical frameworks and certain aspects of the model formulations were rather ill-defined. This is not
surprising since, at the time many of these models were developed, appropriate theoretical frameworks
for combining the fracture and plasticity components of such models were in an early stage of deve-
lopment. The situation is now quite different due to the major developments in constitutive theories that
have occurred over the past twenty years. The developments include new damage based models and
theories (Krajcinovic, 1996; di Prisco and Mazars, 1996; Comi and Perego, 2001), advanced plasticity
based models for general concrete behavior (Yang et al., 1985; Han and Chen, 1987; Este and Willam,
1994) and for cracking behavior (Feenstra and de Borst, 1995), formulations for combining plasticity and
damage (Ortiz, 1985; Simo and Ju, 1987; Hansen and Schreyer, 1994; Ekh and Runesson, 2000), plastic-
damage models (Klisinski and Mroz, 1988; Lubiner et al., 1989; Abu-Lebeh and Voyiadjis, 1993; Luc-
cioni et al., 1996; Lee and Fenves, 1998; Meschke et al., 1998; Carol et al., 2001a,b) and the development
of the micro-plane model (Bazant et al., 2000; Carol et al., 2001b; Ozbolt et al., 2001). Also Armero and
Oller (2000) have considered conditions for the thermodynamic validity of models with directional
damage surfaces, which is of particular relevance to the present work. It is noted that there are many
other valuable contributions not included in this list, but many are included in a wide ranging recent
review paper on plasticity and damage, in which there is particular reference to non-local formulations,
by Bazant and Jirasek (2002).
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Within many of the above publications there is recognition that both plasticity and damage are required
to simulate concrete behavior well, but the complexity of simulating key characteristics of concrete be-
havior such as increasing deviatoric strength with increasing triaxial confinement, non-linear behavior in
compression, loss of tensile strength with compressive crushing, softening in tension leading to the for-
mation of fully formed stress-free cracks, aggregate interlock on partially and fully formed cracks, crack
opening and closing with both shear and normal crack surface movements, all within the same framework
means that no one model is yet able to simulate well all of these characteristics.

In some respects the older plastic-cracking models had, at least nominally, greater success at simulating
certain of the above characteristics than many of the new models, yet the theoretical and practical flaws
have understandably led to little work being carried out on them in recent years. However, the author
believes that a model that employs modern plastic-damage theory and yet retains certain of the features of
the early plastic-cracking models is an attractive proposition; not least because such models work with
defined crack planes and therefore have the potential to simulate crack opening and closing behavior and
post-crack shear behavior on fully formed crack planes accurately. Furthermore, if a transition to a discrete
crack is desired, the crack plane orientation and state variables are directly available, although it is recog-
nized that the process of transferring properties to discrete cracks, when multiple cracks are involved, may
be problematic. The development of such a model is subject of this paper.

A thermodynamically consistent framework is described and this is used as a basis for a new model,
although as may be seen later, it did not prove possible to derive analytical proofs of thermodynamic
consistency for absolutely all cases. The damage, or contact, matrix is generated from planes of degradation
(POD is terminology from Weihe et al., 1998), each of which is formed when a damage criterion is satisfied.
The POD aspect of the model employs some of the transformation relationships and theory of earlier non-
orthogonal crack models (de Borst and Nauta, 1985; Rots, 1988); however, the new model is quite different
in that it is developed in a formal plastic-damage-contact (p-d-c) framework, properly couples the response
of all PODs via a new consistency condition that enforces the total and local governing constitutive
equations and employs a new crack plane model which simulates normal and shear degradation as well as
crack closure effects. The fracture aspect of the model is fully integrated with a hardening/softening fric-
tional plasticity component that uses a smoothed triaxial plastic yield surface developed from that used by
Lubiner et al. (1989).

The crack plane model, that relates the local stresses to local strains, is a simplified version of a general
crack plane model which uses contact mechanics to simulate crack closure with both shear and normal
displacements, and thereby aggregate interlock (Jefferson, 2002a), and which uses multiple components to
simulate the gradual transition of material fractions from a bonded undamaged state to a debonded
damaged state during crack formation (Jefferson, 2002b).

2. Theoretical framework
2.1. Overall framework

The model employs plasticity, damage and contact theory in the formulation and thus has been classified
p-d-c rather than the more commonly used classification of plastic-damage.

Definitions of the local and global stress and strain vectors, transformation relationships and elastic
constitutive matrices are given in Appendix A. It is noted that the six-component vector form of Cartesian
stress and strain tensors is used here.

A contact matrix (M,) is defined that has contributions from each POD. If no POD has formed then
M. is equal to the identity matrix.
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The overall relationship between total stresses and strains is given by
6 =M.D.(s —g,) (1)

in which &, is a plastic strain tensor.
The local stress—effective strain relationship, for a POD i, is given by

Si == Dls,- e,- (2)

in which Dy is a local constitutive matrix, the form of which will be discussed in Section 3.
The local strains, e;, are the total effective local strains on a crack-plane. The added ‘fracture’ local strain
vector is denoted e, and is related to the effective strain vector as follows

e, =¢ — Crs; (3)
€, = Clsf‘.Si (4)

where Cji is a local compliance matrix.

It is emphasized that the primary crack plane variables used in these model computations are e and s,
and not e; and s. This has the advantage that the model can be developed in terms of total local relative
displacements (converted to strains), which means that experimental data can be used directly to develop
governing functions.

Eq. (4) is used along with the stress transformation (A.1) to form the constitutive matrix as follows

6 =D.(s6—¢, —&)=D. <(s —g) — ZN}e;,) =D, ((s — &) — ZN/TCM/S/)
=1 =1
=D, <(s —&)— Y N_,quf_,Nja> (5)
=1

J

and

np -1
o= <I + D, Z N}C]Sf/Nj> De(S — Ep) = Defc(ﬁ — Sp) (6)

J=1

in which I is the identity matrix and n, is the number of PODs.

The strain tensor (¢ — g, — &) will be referred to as the ‘elastic’ strain tensor and (¢ — g,) will be referred
to as the ‘recoverable’ strain tensor.

The contact matrix is given by

-1
p
M. = (I +De ) N_,Tclsf,N,-) (7)
=1
Alternatively Eq. (6) may be written in terms of the compliance matrix as follows
(8 —&p) = Cere0 (8)
in which

np
Cefc = <Ce + Z N}Clsf/.Nj>

J=1
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2.2. Thermodynamic restrictions

The model should obey the first and second laws of thermodynamics and produce non-negative energy
on any loading cycle. Considering mechanical energy alone, the second law may be expressed as (Meschke
et al., 1998)

e — W >0 )

Vo is the Helmholtz free energy which here comprises two components, one the elastic recoverable strain
energy ¥ and the other the latent, or locked in, energy ¥ as follows

Yo=Y+ ¥, (10)

It will be assumed here that ¥, is non-negative and is equal to a positive fraction of the total work rate
minus the rate of change of stored elastic energy. Thus, to show that the model is dissipative, it is sufficient
to prove that

c'e—¥>0 (11)

lp = %(8 — SP)TDefc(S - Sp) = %GTCefCO' (12)

It is noted that (12) applies to the case for which C.g simulates unloading to a stress free state in a linear

manner.
Using (8) and (12) in (11) gives

6" [Cere6 + Cere6 + &) — 2(67Cete0 + 6" Cee6 + 67 Cere6) = 0 (13)
If the part associated with plastic straining is separated from the rest of the equation, then (13) is satisfied if

6'é, >0 (14a)
and

6"Cer0 + 6" (Cope — CL )6 =0 (14b)

By using (8) in (14b) and applying the transformation (A.1) it may be shown that (14b) is satisfied if the
local form is satisfied for all PODs i as follows

s Cigr,si + 57 (Cir, — Cl )$i = 0 (15)

The conditions (14a) and (15) are those required for ensuring that the model always predicts non-negative
dissipation on a closed loading cycle. The conditions have been derived allowing for the possibility that
both C.. and Cj; are asymmetric.

3. Model components
3.1. Local damage-contact relationships

The essential idea of the fracture part of the model is to use the stress—strain relationship of an effective
crack plane to generate a relationship between added local fracture strains and local stresses.

The local stress—effective strain model employs a simplified version of the effective crack plane model
developed by the author (Jefferson, 2002b), but here only the damage and contact components are used. It
is noted that here local strains rather than relative-displacements are used, but that the strain parameters
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depend upon a characteristic length and the fracture energy per unit area following the approach of Bazant
and Oh (1983). In finite element applications this characteristic length is dependent on the element size
(Bazant and Oh, 1983; Oliver, 1990).

In the crack plane model it is assumed that a representative volume comprises two components of
material: (i) undamaged material and (ii) fully-debonded material. The proportions of material in each
component, per unit representative area, are denoted 4. and A, respectively and 4. and A; must satisfy the
following conditions

he+hi=1, 0<h <1, 0<h <1 (16)

If the /4 terms are compared with those used in an isotropic damage model, in which the scalar damage
variable is w, then A, = 1 — w. A is a function of a scalar damage variable {, and 4; depends upon the
contact condition and the state of damage. The local stress is the sum of the stresses on the two components
as follows

s = ho(0)Dre + e (C, €)st (17)

in which s; is the local stress vector for the fully-debonded material component.

Following Jefferson (2002a), three states of contact are defined for a crack plane that are termed open,
interlock and closed. These are illustrated in Fig. 1 in local strain space.

Experimental evidence suggests that once a crack has opened on a plane, contact can be regained with
shear, as well as normal, movement and that the contact surface can be reasonably simulated with a linear
function in strain space (Jefferson, 2002a), as shown in Fig. 1.

In the open state the stress in the debonded component is assumed zero. In the interlock state the
debonded stress is derived from a contact law in which the stress is assumed to depend upon the distance (in
local strain terms) to the contact surface that is denoted by the vector g and which is termed the embed-

<] Interlock Interlock ¢
€
4l
|
2
Closgd
£z \V Y ‘\'.. ~

Fig. 1. Local contact states.
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ment. In the closed state, g is equal to the local strain vector since the contact point coincides with the origin
of the local strain space.
The interlock and closed functions used to identify which state is active are

(z)mt g’er \/ 62 + eZ (183)
dqe) = e +mgy/e +é? (18b)

If ¢ (e) <0 State = Closed
If ¢ (e) >0 and ¢, (e) <0 and e, < ery State = Interlock
If ¢ (e) =0 or e, = ep State = Open

—_— —

The constant m, can be obtained from experimental data from tests in which shear is applied to an open
crack, for example from the tests conducted by Walraven and Reinhardt (1981). In Jefferson (2002a) m, was
taken as a constant of value 0.3 but from the data presented in that reference it is considered that a rea-
sonable range for m, for normal strength concrete is 0.3—-0.6. It was found that a low value of 0.3 could lead
to second cracks forming at shallow angles to the first, due to the development of relatively large shear
forces, and therefore a larger value of 0.5 is recommended as the default.

In the interlock state the direction of g is fixed by the normal to the interlock function and therefore the
embedment can be expressed in terms of the positive scalar g (always positive in the interlock state) and the
normal as follows

_( OPine / ‘%lm

The embedment may also be obtained from a transformation of the local strains as follows

) —ng (19)

g =D (20)

where

_ 1 a¢im aqsint az(pmt
q)g_l—i-mf,(( de >< e ) + b ) (21)

There is a crack opening strain beyond which no further contact can be gained in shear and this is denoted
er. In this implementation of the model, eg, is made a multiple of &, i.e. eqy = mypyey. Trials suggest that
when concrete contains relatively large coarse aggregate i.e. 20-30 mm, a value of myg, in the range 10-20 is
appropriate, whereas for concrete with relatively small coarse aggregate, i.e. 5-8 mm, a lower value is
appropriate, in the range 3-5. This variation is necessary because the relative displacement at the end of a
tension-softening curve (related via the characteristic dimension to &) is not in direct proportion to the
coarse aggregate size, whereas, as was shown in Jefferson (2002a,b), the clearance displacement is roughly in
proportion to the coarse aggregate size. Thus eg, is not in a fixed ratio to ¢g.

As a crack opens the relative proportion of debonded material that can regain contact in shear reduces as
crack opening increases. Walraven and Reinhardt (1981) developed two linear functions that relate normal
and shear displacements to the associated stresses. A function for 4 that, when applied in Eq. (17), fits these
linear relationships with reasonable accuracy is given below
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he = (1 — he)Hy
Hi =H, 1if e, < g
(22)

eg—ét

2 2
 (en (e \
Hy = Hy{ re " ( 0 ) +(1=r)e ™ ( l ) (1 — e_”gfzj2w>

where rp = 0.95, pr, =4, pr, = 1.5, ¢g = 3, & is uniaxial strain at first fracture and & is the strain at the
effective end of the softening curve, as illustrated in Fig. 2. Hy, is set to 0.995 rather than 1 for reasons
explained in Section 6, which discusses the thermodynamics of the model.

H; may be thought of as representing the proportion of the damaged material on a POD that is in
contact. The function is smooth with respect to the opening displacement e, and also provides a smooth,
though rapid, transition to Closed and Interlock states, via the last term in Eq. (22). The latter term can,
however, be set to unity for single point constitutive simulations. The purpose of using smooth functions is
to improve the convergence properties of the model when implemented with Newton iterative solution
algorithms.

Here, the variable e,, which is defined in Fig. 1, is used to measure the opening displacement rather than
component e,. The advantage of using e, is that unloading along g to the surface is linear and thus the free
energy associated with interlock contact takes a familiar quadratic form. e, is related to the components of
the effective local strain, as follows

1
eg = Tmf, {el + mgy/e3 + e%} (23)

In direct tension the damage model should produce the type of characteristic softening curve shown in Fig.
2. When the material has experienced a degree of ‘crushing’ in compression there is a general loss of tensile
strength (Kupfer et al., 1969), and in the present model this is simulated with an increase in damage and a
reduction in the first fracture stress. It is recognized that apparent ‘crushing’ in, for example, a concrete
cube test largely involves diffuse cracking and therefore its simulation with increased damage is considered
reasonable.

&t

{

hc =rc + |:(1 - rc) %eczﬁ] 672$ (24)

where the first fracture strain ¢ = f;/E, f; is the tensile strength and E the Young modulus.
The terms « and x, are the plastic parameter and peak plastic parameter values, respectively. These are
explained in context, in Section 3.2. The constant ¢, is set to a fixed value of 5.

Normal stress
A

fr —

»
»

i€ g o

Fig. 2. Characteristic tensile softening curve.
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A ﬂesz +et2

Damage surface

1
ﬁ“&

Vg
N er

Fig. 3. Local damage surface.

In Eq. (24) the damage strain parameter { is set to an initial value of ¢. The first term in (24) serves to
provide residual damage strength that is useful for stabilizing numerical calculations and maintaining a
residual damage stress. . was set to 0.01 for the constitutive simulations in the present paper.

A POD is assumed to form when the principal stress reaches the fracture stress (f;), with the POD being
normal to the major principal axis. Thereafter, it is assumed that damage on the plane can occur with both
shear and normal strains. The damage surface, which is similar to that used by Kroplin and Weihe (1997)
and is illustrated in Fig. 3, is as follows

2
<

The material constants ». and p, are the strain equivalents of the relative shear stress intercept r, = ¢/ f; and
the asymptotic friction factor u, noting that c is the shear stress intercept. These, the stress ratios, are set to
0.8 and 0.5 respectively.

The constitutive relationship for the effective crack plane can now be written

s = Dy(hce + heg) = D (A + he®y)e = Dse = DL M, e (26)

€r

Ble.) =4

a3 - ) 4 (e + o) < 25)

where

®, =0 if State = Open
@, = @, if State = Interlock
@y =1 if State = Closed

Using Egs. (3) and (4), the relationship between the stress and added fracture strain can be derived to be
er = (M;l — I)CLS = C]st (27)
Alternatively, the added fracture strains may be expressed in terms of the effective local strains as follows

€ = (I - Mx)e (28)

3.2. Plasticity component

3.2.1. Triaxial behavior
Experiments on concrete in compression show a number of characteristic features (Kotsovos and
Newman, 1979), which include;
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¢ significant non-linearity up to a peak stress with post-peak softening thereafter,

e increased deviatoric strength with triaxial confinement,

e unloading-reloading behavior that is near elastic until well into the post-peak range, except under high
confining pressures.

A relatively simple, but powerful, plasticity component is included in the present model. A smooth
triaxial yield surface is developed from the yield function used by Lubiner et al. (1989) and from Willam
and Warnke’s (1975) smoothing function. Since a consistent formulation is to be used in the final imple-
mentation, the second derivative of the yield function is required, and therefore it was considered expedient
to use a relatively simple yield surface with straight meridians.

The model includes friction hardening and softening to account for pre and post peak non-linear be-
havior, and uses work hardening in which the total work required to reach the peak stress envelope is made
a function of the mean stress. The model is developed with a dilatancy parameter that allows plastic flows
to be associated or non-associated, although to simulate experiments accurately non-associated flow is
required.

The accuracy of the model reduces for stress states with high triaxial confinement because the model
does not simulate non-linearity under hydrostatic compression and the yield function has straight meri-
dians. This is quantified in Section 7, where a confining limit is suggested beyond which the model is
considered inaccurate.

3.2.2. Yield function

The yield function adopts the same meridians, in octahedral stress space, as those used in the com-
pressive part of the model of Lubiner et al. (1989), however, to avoid having discontinuities in the pi-plane,
as in the Lubliner surface, the smoothing function of Willam and Warnke (1975) is employed. This
smoothing function simplifies considerably if the eccentricity parameter (p) is set to a constant value of
1/v/2. The resulting function is as follows

F(o,2(k)) = VDA (0) + (oc + %)zlz ~ £Z(1 %) (29)

where

2cos(0)” + b2

cos(0) + by/2cos(0)” + ¢

and [, is the first stress invariant, J,, the second deviatoric stress invariant, 6 is the Lode angle (with range
0-60°) and Z is a friction hardening factor, which is a function of the work hardening parameter x. Z varies
from a possible value of 0, at which the yield surface degenerates to a line on the hydrostatic axis, up to 1 at
the peak surface position. The initial position of the yield surface is governed by the initial value of Z = Z,.
For most situations in which the degree of triaxial confinement is relatively low, a value of between 0.5 and
0.6 is considered appropriate for Z, however, for higher confinements a lower value of 0.25 is better. The
boundaries between ‘low and high confinements are discussed under Example 5 in Section 7.

The material parameters required to define the constants are the uniaxial compressive strength £, and the
ratio between the biaxial and uniaxial strengths b,, which is generally in the range 1.05-1.3 (Kupfer et al.,
1969; van Mier, 1997). The constants in Eq. (29) are then obtained, in the manner described by Lubiner
et al. (1989), using the following expressions

br_l 5 3(1_p) Y
=— =v2-1 ==-—-2Vv2 =1/Vv2 =— = ——
=T b=vV2-1, ¢ 5 V2, p=1/v2, o1 P \/§+\/§

Ar(e) = pc
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Fig. 5. Yield function on the pi-plane.

A comparison between the experimentally determined curves of Kotsovos and Newman (1979) and the
meridians from the yield surface is shown in Fig. 4. A comparison with the surface of Lubiner et al. (1989)
in the pi-plane is shown in Fig. 5.

3.2.3. Plastic potential and flow rule

The plastic potential function, given below, is obtained directly from (29) but an additional parameter
() 1s added which can be used to control the degree of dilatancy. Associated flow is achieved if » = 1, but it
was found that y values in the range —0.1 to —0.3 were required to match experimental data. Generally y is
set to —0.1, but for high degrees of triaxial confinement —0.3 provides a better match to experimental data.
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Glo, 2() = VRA(0) + (2 +5 )12 — fiZy(1 — 2) (30)
The flow rule is derived from the plastic potential in the standard way as follows
oG
. _9G 1
& oo A (3 )

A is the plastic multiplier, which obeys the condition A=0.
The restriction on y, supplied by expression (14a), may be expressed as

oG
TZ— >
? de ~

and is satisfied if ¢ > —1.

0 (32)

3.2.4. Hardeninglsoftening relationships

A work hardening hypothesis is made for the present model, and it is assumed that the amount of work
to achieve peak stress increases with the mean stress, according to a parameter X. This parameter performs
essentially the same role as the ductility parameter of Este and Willam (1994). The work hardening
parameter, expressed in rate form, is given by

k= X(o)a"g, (33)

A single friction hardening/softening function for Z has been adopted which gives a smooth transition from
pre- to post-peak behavior, as follows

Z=7y+ (Gt )} e (1 — e <) (34)

C

where 1 = 1 /k,, k,, the value of « at the peak yield surface position; and to ensure that the peak occurs at
Z =1, the constants of (34) must satisfy the following relationships ¢.; = T_Zz:%z and a, = e % (1 — e72).
The actual values used are ¢, = 5, ¢; = 0.0339182745 and a. = 0.9601372615.

The following expression for x, was derived by integrating Saenz’s (1964) equation over a uniaxial
stress—strain curve in compression and then removing the elastic component, using data typical for

structural concrete

Kp = fo (0.728C - ;—;) (35)

in which ¢, is the uniaxial compressive strain at the peak uniaxial compressive stress (f.).
The expression used for the enhancement factor is as follows
X=e+e '+ X (36)

where y =1, /(f. x 0.9) + 0.55 and X; = 0.0022 it should remembered that the enhancement factor will
never be required for stress states for which /; is positive i.e. tensile.

4. Constitutive matrix and stress update computations

For the finite element implementation of the model, a consistent algorithm was developed for the tangent
matrix and stress recovery computations following the principles established for computational plasticity
by Simo and Taylor (1985), but extending the approach to the present p-d-c model. This algorithm is
described in a linked publication Jefferson (2003), but here the more standard form of the tangent con-
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stitutive matrix and stress recovery algorithms are described, which were employed for much of the work on
the single point stress/strain path simulations.

4.1. Tangent constitutive matrix

The stress—strain rate relationship may be written as follows, if any variation in N; is ignored.

6=D, <(.é, — &) — iN}Q) (37)

The local stress—strain rate relationship for each POD is considered as follows, noting that here the POD
subscript is temporarily dropped for clarity.

s=D, [( 624 > : Gggx efc} = Dy (Mé -+ mx) (38)
é=M,"[CLs — m K] (39)
=M —DCrs — M 'mlk = Cy$ — B,k (40)

where

oM,
M. =M, + oe
Je

@, =M 'm.

X T aT T
M. |, _ (dk or! +(dhr 6<+dhfeeg+dmeag>q,d>

de dt “oe "\ At “0e " de,“ e ' dg < Qe
., Oh, Ol
mk or e+ O (Dd

in which o denotes a general matrix vector contraction.
The relationship between the local and global stress rates is as follows

S, = NlO' (41)

It is noted that in the consistent algorithm the rate of N, is also included, which is only non-zero within the

increment a POD first forms.
Substituting for &, and & in Eq. (37), using (31) and (40) respectively gives

6=D, <<s—/1) iN (C$ — Bk )) (42)

Substituting for k¥ from (33), for s from (38) and rearranging gives

6 = Dy(é— g, 1) (43)
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in which

-1
’1p
Dt = (I + De Z N;Fcltf, N1> D.
i=1

i=

Applying the consistency condition to the yield surface gives

oF" | OF |

% 6+ 5 k=0 (44)
substituting for ¢ from (43) and k from (33) and rearranging gives

. a)'p

joli) D, (45)

(%_{:)TDefcgm - htc

in which b, = £Xe" .

Using (45) in (43) gives the tangent elasto-plastic-damage-contact matrix

Diere ¥ (%) 'Diese
6= (Dtefc_ lf_i‘_,a'(aa') o >8 (46)
(Z_{:) Defcgm_hx

4.2. Stress recovery

4.2.1. Overall approach

The approach adopted in this stress recovery algorithm is first to update the effective local strains and then
account for any plastic flow, with the later computation employing the updated e-f-c constitutive matrix. The
plasticity equations are then satisfied using a Tangent Cutting algorithm (Ortiz and Simo, 1986).

4.2.2. Local strain update

It is important that the governing relationships between global strains and stresses (Eq. (1)); local and
global stresses (Eq. (A.1)); local stresses and effective local strains (Eq. (26)) and local effective strains,
added fracture strains and local stresses (Eq. (3)) are all satisfied in the stress computations. Using these
equations, a set of coupled equations may be derived in which the unknowns are the effective local fracture
strains of each POD (e;) as follows

np

fo = Ny De(e" = 6) = SN (1= M,)ef | — Dye =0 (47)
=1

The superscript £ denotes the iteration number and update is from the last iteration, which is in contrast to
the more rigorous consistent FE version of the algorithm in which all updates are made from last converged
state. These non-linear equations are solved using a Newton-Raphson approach. Typically one to two
iterations are required for a case with a single POD, three iterations for two PODs and five iterations for
three PODs. The name total-local function is introduced for Eq. (47) because it maintains, simultaneously,
the local and total constitutive governing relationships. Once any new PODs have been formed and the
local strains updated using Eq. (47), the secant elastic-damage-contact matrix (Deg) is formed and the trial
stresses computed for the plasticity stress reduction phase.
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A restriction which the author has chosen to place on (47) is that relationship between the effective local
strains (e;) and the total ‘elastic’ strain tensor (¢ — ¢,) should always be unique. This places some restrictions
on the form of the local stiffness matrix that will be discussed in Section 5.

4.2.3. Update algorithm

The trial stress is first computed from Eq. (48), the yield function is then checked and if the yield function
value exceeds zero, Eqgs. (49)—(51) are applied sequentially until the yield function converges to within a
given tolerance of zero, at which point the global stress ¢ is updated to the value a,.

o, = DE (& — s';_l) (48)
A= — 10w 2(x)) (49)
(5) Dete & — halr)
oG

= o~ 29N
O =0 — (50)

0
AK:X(atr)o'tTra—SAi: K =K+ Ak (51)

in which A denotes the change in a variable and superscript & denotes the overall iteration number.

It is noted that the value of x used in the evaluation of Dy is that from the last iteration, and since this
secant form has accounted for changes in «, it is appropriate here to use 0G/0a, rather than g, in the
denominator of Eq. (49).

It is emphasized that this algorithm is only suitable for relatively small steps, as may be used in simu-
lations with a constitutive driver, but the use of this stress update with the tangent matrix given in (46)
would be unwise in a finite element implementation, in which strain step sizes can be much larger.

5. Implications of different forms of local elastic constitutive matrix

A general form of the local elastic constitutive matrix is given below in Eq. (52).

E, 0 0
Di=|0 E 0 (52)
0 0 E

A number of options for the values of E, and E, were considered during the development of the model. The
first, which is perhaps the natural choice, is that £, = E (Young’s modulus) and E, = G (the elastic shear
modulus), such that the relationship between local stresses and effective local strains is based on the uniaxial
elastic and shear moduli. Noting that G = E/2(1 + v).

A second option is based on the observation that Dy = N,-DeN]T fori=j,if E, = E and E, = G. With
this form of Dy Eq. (47) reduces to ‘

N]Del(s — Sp) = DLel (53)

1—v

B =B T =)

for 3D, plane strain and axisymmeric cases

1
E. = E——— for the plane stress case

(1 —0?)
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This means that for the one POD case there is a direct relationship between the local effective strains and
the recoverable strains (¢ — &;).

A third option was considered because the thermodynamic restriction summarized in inequality (15)
simplifies to the more manageable form shown in Eq. (54) if Ci is symmetric. The forms considered in
options one and two both result in Cj; being non-symmetric in the interlock state, however if E, = E, then
both Dy and Cy; are always symmetric since @4 is always symmetric.

S?C]sfisi =0 (54)

Options one and two are similar with £, being the same for both options and E. being typically within 10%
of E. Since option two leads to a simplification of Eq. (47) only option two will be discussed further.

The thermodynamic assessment of the model will be made for both the symmetric and the asymmetric
forms of Ci and it is noted that both options were implemented. However for option two, the ratio be-
tween the normal and shear stiffness is consistent with the properties of a band of elastic material, which
suggests that data from shear-normal tests can be used directly to calibrate the model. Furthermore, option
two proved to provide better fits to experimental data, as may be seen in Example 3 of Section 7, than
option three. Therefore option two was the one chosen for the finite element simulations in the associated
paper. The decision to use option two is however tentative because it did not prove possible to derive a
formal proof that the model with this asymmetric form of Ciy satisfied the second law of thermodynamics
for all cases, whereas such a proof was possible for the symmetric case, at least for 2D problems.

6. Thermodynamic assessment
6.1. Plasticity component
The general thermodynamic restrictions were summarized in expressions (14a) and (15). Dealing first

with the plasticity component, it may be concluded that (14a) must be satisfied for all stress states because
the yield function is convex, the plastic multiplier is non-negative and condition (32) is satisfied.

6.2. Damage-contact component

6.2.1. Open state
In the open state C reduces to the form shown in Eq. (55), and the inequality (15) reduces to that
shown in (56)

1
Cir = (h_ — I)CL (for open state) (55)

C

-1 dh\ . dhc\ . —1.
[sl,TCLs,-]h—g <( a )§+ < T >;c> = [sl.TCLs,-]ﬁhC >0 (56)

C

C. is diagonal and positive for both options and therefore the term in square brackets must be non-
negative. Also, . > 0 (Eq. (16)), dA./d{ <0 and dh./dx <0 (Eq. (24)), h. <0, { = 0 and & > 0, therefore
inequality (56) must be satisfied.

6.2.2. Closed mode
In the closed state Ci reduces to Cp and thus inequality (15) is satisfied.
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6.2.3. General interlock state case

As explained in Section 5, using option three for Dy resulted in Cj being symmetric and inequality (15)
reducing to that shown in Eq. (54). .

The sources for changes in C, that are represented by Ci in Eq. (54) are divided into two categories;
firstly those resulting from changes in the proportion of damaged material that is in contact (H;) and
secondly those resulting from changes in the basic material components 4. and (1 — k).

Dealing with the first source changes; the total-local function (47) ensures that the local and global
constitutive conditions are simultaneously satisfied and that there is a always a unique relationship between
the global recoverable strains (¢ — g,) and the local strains e; on each active POD i. Hj; is a function of e; and
the local stresses s; are also functions of e;, therefore any closed cycle of the global strain tensor, that in-
volves no plasticity and no damage, must return to the starting values of s; and . Thus, under these
conditions, the model predicts zero dissipation for both symmetric or asymmetric forms of Cig.

6.2.3.1. Plane-stress case with Cy option 3. With reference to the second source of changes, a two-di-
mensional plane stress case will be considered first, because for this case it proved possible to derive a
compact analytical form to show that inequality (54) is satisfied by the present model for option three for
which E, = E.. If the shear strain component is positive then M, is equal to

A O He(1 —he) [ m2  —m,
MX_[O hJ+ Ttm |-m, 1 (57)
It noted that that the final expression derived below does not depend on the sign of e;.
Using the inverse of M, from (57) in (27) gives the following form for Cy
—he — hem?, — Hy + Hhe mgH; (he — 1) 1
1 (1 +m§)hc(—hc _Hf+Hth) (1 +m§)hc(—hc _Hf+Hth) E_
Clsf = E 2 2 2 - ! 1 (58)
" mng(hc — 1) —he — hcmg — mng + mnghC 0 —
(1 +m2)he(—he — Hy + Hehe) (14 m)he(—he — Hy + Hehe) E,
and
_1 - mi, + Hf mng
aClsf _ i (1 + mézr)hc(fhc — H; JFHfhc) (1 + mﬁ)hc(*hc — Hp + Hfhc)
oh. E, myH; —1 — m; + m;Hy
(I +m2)he(—he — Hy + Hehe) (1 + m2)he(—he — Hy + Hihe)
*hc — hcm§ — Hf + Hfhc mng(hc — l) 2]’!0 —|—Hf - 2Hfhc
mng(hc -1 —he — hcm§ — mi,Hf + m;Hfhc E,(1+ mé)zhg(—hc — Hy + Hfhc)2
(59)
Noting that here only changes in H; due to changes in 4. are being considered,
: 0Cis ;
Cyst =——he 60
=g (60)

If Cy is symmetric positive definite then the quadratic condition (54) must hold. This can be proved by
showing that the matrix has all positive eigenvalues or, equivalently, by showing that it is an Hermitian
matrix for which the minor principals are positive. For the present 2x2 matrix the latter may be sum-
marized for a general matrix A by

A;; >0 and |A| > 0.
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From (59) and (60) the determinate of Ci may be shown to be the following
—(he)’ (H — 1)
2 (61)
E2h2(—h, — Hy + Hyh,)
If H is less than unity, the determinate is always positive. Since this is zero when Hy = 1, which implies at
least one zero eigenvalue and that the matrix is non-invertible, an upper limit of 0.995 is placed on Hy, as
noted earlier.
From Eq. (59)
aClsf h ]’lg (1 —Hf)z + mé(l —Hf) + 2hCHf(l —Hf) +Hf2( h ) (62)
Ohe 11 © E,(1 + m2)h2(Hhe — Hy — h)’ ¢
and with 0 < h, < 1,0 < Hr < 1,0 <m, <1 and he <0 this is always positive.
Thus, for the plane-stress case it is proved that the model satisfies the second law of thermodynamics
with this symmetric form of Ci.

|Clsf| -

6.2.3.2. 3D case with C, option 3. For the general 3D case it did not prove possible to derive an analytical
form for the principal minors or the eigenvalues, however a compact form has been derived for Cy, which
is given below, and this has been used to check the positive definiteness of Cig.

i -1
mg +— —cosf —sin 0
b 1 h
Cy= | —cos0 — —msin®0+ EC m, cos 0sin 0 [ﬂlg - C (63)
mg n
. . 1 he
—sin6 m, cos 0sin 0 m——mrcosze—I—E
g
in which
(4] €1 (1 — hc)Hfm
m,=——, 0 =arccos | —— and = ¢
Vare <\/— +e§> R

Using the following finite difference approximation, the normalized eigenvalues of Cyy are given in Table
1 for a range of parameters.

0Cy¢ (he . Cise(he + Ahe) — Cig (A .

%En sgn(h,) ~ b (he + Ahz Al )E,, sgn(he) (64)
noting that the derivative of C is multiplied by the sign of h. so that the eigenvalues take the same sign as
those of Cj.

Table 1 shows that all three eigenvalues are always positive except when H; is unity when, as predicted by
the 2D study above, at least one eigenvalue is zero. Checks were performed for parameter values inter-
mediate between the extreme values shown in the table and in all cases the eigenvalues were positive when
the parameters were within the specified limits (e.g. Hy < 1). From this study it is concluded, though not
formally proved, that the model with symmetric C;; does always predict non-negative dissipation.

6.2.3.3. General case with Cs; option 2. For the general 3D case with non-symmetric Cyy it did not prove
possible to produce a compact analytical expression that proved that the model satisfies the second law of
thermodynamics. Thus, numerical checks were performed for a series of strain paths in the interlock region
in which both 4. and H; were varied. The procedure adopted was to evaluate the work per unit volume (w)
for a strain cycle, checking that the final total was positive. The strain paths used relatively small strain
increments (Ag) and Eq. (65) was used to evaluate w.
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Table 1

Normalised eigenvalues of Cis
he mg H; 0 (°) m; Eigen-values
0.99 0.425 1 0 1 1.020 0 0.5183
0.01 0.425 1 0 1 1.000E4 0 2.1178
0.99 0.425 0.995 45 1 1.020 5.000E-3 0.5208
0.01 0.425 0.995 45 1 1.000E4 5.050E-3 2.1488
0.01 0.425 0.01 45 1 1.000E4 2.500E3 4.530E3
0.99 0.425 0.995 0 0.5 1.021 5.000E-3 0.3386
0.01 0.425 0.995 0 0.5 1.000E4 5.050E-3 0.7559
0.99 0.3 1 0 1 1.020 0 0.3604
0.01 0.3 1 0 1 1.000E4 0 0.8580
0.99 0.3 0.995 45 1 1.020 5.000E-3 0.3636
0.01 0.3 0.01 45 1 2.500E3 3.713E3 1.000E4
0.99 0.3 0.995 0 0.5 1.020 5.000E-3 0.2251
0.01 0.3 0.995 0 0.5 1.000E4 5.050E-3 0.3701
0.99 0.9 0.995 0 0.5 1.02031 5.000E-3 0.7075

w= Y o' As (65)

icrements

Three paths are presented in Fig. 6 that include opening, closing, damaging and non-damaging sections in
interlock mode. Paths 1 and 2 start and end with zero strain whereas path 3 has a closed loop from the
strain identified as point B. In all cases the energy at the end of the closed cycle is greater than that at the
start of the cycle. The material parameters used in the checks are shown in Table 2 but these paths were also
checked with a range of different parameters which include elastic properties in the range 0.75-1.5 times the
values shown, m, in the range 0.3-0.9 and ¢ in a range of 0.5-2 times the value shown. In all cases the paths
showed positive dissipation.

6.3. Final remarks

This section has proved that for all cases, except the general interlock case, the model predicts dissipative
behavior for both symmetric and asymmetric forms of local constitutive matrix. Furthermore, for the plane
stress case, non-negative dissipation is also proved for the general interlock state with the symmetric form of
local constitutive matrix. The corresponding three-dimensional idealization is also shown (though not
formally proved) using a semi-analytical study to be dissipative. For the idealization with a non-symmetric
local constitutive matrix, the interlock case did not prove amenable to analytical treatment and thus a
numerical study was undertaken to assess whether the model is still dissipative. From this study it is con-
cluded, albeit tentatively, that the model does satisfy the laws of thermodynamics even with an asymmetric
local constitutive matrix, at least when using material properties suitable for normal structural concretes.

Overall the safest option from a purely theoretical view-point would be to use the form of the model with
a symmetric local matrix, however, as will be shown in the next section, the asymmetric form produces
results closer to those observed in experimental studies, and since the numerical study has also shown this
form to be dissipative, this is the form used for the finite element simulations in the associated paper.

7. Single point stress—strain examples

A number of single point stress—strain path examples are given, which provide comparisons with test
data. The numerical analyses were undertaken using a constitutive driver program in which the Craft model
has been implemented. The material properties for each example are given in Table 3.
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Fig. 6. Strain path work checks.
Table 2
Material properties used in test
E (N/mm?) v foe N/mm?)  f; (N/mm?) &, & be Z W mg Ml
40000 0.2 50 2.8 0.003 0.002 1.15 0.6 -0.1 0.425 10

The model has been developed with relatively few non-fixed material parameters, and each of these
chosen parameters relates to a particular physical characteristic that could be measured experimentally. The
non-standard parameters, along with a reference to section in which they are discussed, are as follows; b,
(3.2.3), Zy (3.2.2), ¥ (3.2.3), m, (3.1) and myy, (3.1). The decisions to use only a few parameters, and to
choose only those that could be directly related to a physical characteristic were made so that users of the
model could understand the parameters and what they related to.

Example 1. In this example a comparison is made with the uniaxial tensile softening curve of Hordijk
(1991). Hordijk’s function is recognized to match well a wide range of data, and here the comparison is
carried out for the data reported by van Mier (1997). In the simulation, an assumed fracture process zone of
60 mm is used and the elastic deformations are removed from the total to give the opening displacements.
The comparison is shown in Fig. 7.
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Table 3

Material properties used in examples
Example E (kKN/mm?) v foe N/mm?)  f; (N/mm?) & & b. Zo v myg Ml
1 35 0.15 40 3.2 0.002 0.0027 1.15 0.5 -0.1 0.4 10
2 35 0.15 40 32 0.0022  0.0060 1.15 0.5 -0.1 04 10
3 30 0.15 29.5 2.7 0.0022  0.001 1.15 0.5 -0.1 0.38 20
4 35 0.18 32 2.4 0.0021 0.002 1.15 0.5 -02 04 10
5 37 0.15 46.9 3.0 0.0023  0.003 1.1 0.25 -03 04 10

Example 2. In this example a qualitative comparison is made with data from a test series on notched
fracture specimens carried out by Reinhardt (1984). The specimens, illustrated in Fig. 8, had an effective
area at the notch of 50 x 50 mm?. The displacements were measured with extensometers with a gauge length
of 35 mm. The data used here is from the narrow specimen tests designated LCLS (large compressive lower
stress). It was assumed, in processing the numerical results, that the characteristic crack dimension was the
gauge length used in the test. The limiting strain parameter g, was computed from the opening displacement
at the end of the softening curve (i.e. 0.21 mm) divided by the gauge length. The present model simulates
secant reloading—unloading and full crack closure at zero axial strain (in this case), hence it was considered
only necessary to show a single unloading reloading cycle in the numerical results. The results are shown in
Fig. 9, in which the smooth transition to the closed state (See Eq. (22)) is just discernable from the graph.

Example 3. A comparison with the results from a pair of normal-shear tests undertaken by Walraven and
Reinhardt (1981). The test specimens, which are illustrated in Fig. 10, each had a shear plane of 300 x 120
mm? and were tested in a stiff testing frame with external restraint bars used to control the crack opening.
The tests were conducted with specified initial crack opening displacements, and in each case two tests were
conducted with the same nominal openings. Once a crack had been formed to the required opening, a shear
load was applied whilst the normal and shear displacements were monitored. The results of two experi-
mental tests with initial opening displacements of 0.2 mm are shown in Fig. 11, along with the numerical
results from the constitutive driver. The numerical predictions are not as accurate with the present model,
which employs a simplified damage-contact crack-plane model, as those shown in Jefferson (2002b), but the
model does simulate the stress free zone before contact, as well as the build up of shear and normal stresses
reasonably.

Example 4. In this example comparison is made with data from a biaxial series of tests on plate type
specimens by Kupfer et al. (1969). Uniaxial and biaxial compression tests are selected and plots given for
both axial and lateral strains against the uniaxial compressive stress. Comparisons are shown in Fig. 12. It
is noted that the graphs have been plotted in the compression positive convention of the experimental data.

12; —A— Hordijk
i
1 ! .
—&— Numerical
s 0.8+
E 0.6
@ 0.
n 04 &}kﬂ
0.2 AL
0 AN o
0 50 100 150 200

Crack opening (um)

Fig. 7. Example 1. Uniaxial tension curve.
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Fig. 8. Example 2. Reinhardt’s cyclic testing arrangement.

IS

Stress N/mm?
D
Stress N/mm?
D B+ N @
/ (D
@
=
[}
o
=

Experimental

~ ‘

I
i

BN Wb

>

25 50 75 10 25 150 25 50 75 10 25 150

'
o
L

~N

.
<

w

Displacement pm Displacement pm

Fig. 9. Example 2. Uniaxial tension with crack opening and closing.
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Fig. 10. Example 3. Walraven and Reinhardt’s testing arrangement.

Example 5. In this example, comparison is made with data from a series of triaxial tests undertaken by
Kotsovos and Newman (1979). Data from two triaxial tests are used for comparison, one with a confining
stress of 35 N/mm? and the second with a confining stress of 70 N/mm?. The comparisons are shown in



A.D. Jefferson | International Journal of Solids and Structures 40 (2003) 5973-5999 5995

0 Opening displac.mm——
/
6 15
I’ 1
5 ﬂ N ——o ~
~ 4 £ -2
1S
£ £
£ 31 —¥— Exper. 1/0.2/0.4 i 3
ZP 2 —O— Exper 1/0.2/1.4 o
1 shear displac. mm | —2— Numerical (asymm) -4
—8— Numerical (symm)
0 T T -5
0 1 2 3

Fig. 11. Example 3. Walraven and Reinhardt’s normal-shear tests.

Fig. 13. The graphs have again been plotted in the compression positive convention of the experimental
data. It may seen from the comparisons that the model is less accurate at the higher confining stress at
which hydrostatic crushing, not accounted for in this model, becomes significant. From these results it is
suggested that, in triaxial cell terms, the model maintains reasonable accuracy up to confining stresses of
one and half times the uniaxial compressive strength.

8. Conclusions and closing remarks

The model framework and associated conditions derived for ensuring thermodynamic validity are ad-
equate for the development of a plastic directional-damage-contact model for concrete.

The new total-local consistency condition is effective at rigorously maintaining the local and global
constitutive relationships as well as the stress transformation relationships.

The relatively simple functions used in the local POD model allow the accurate simulation of direct
tension fracture behavior. Furthermore, the incorporation of a contact model on damaged PODs enables
crack closure, shear contact and aggregate interlock behavior to be simulated with reasonable accuracy.

The frictional hardening plasticity component is adequate for simulating the compressive behavior of
concrete up to confining stresses of approximately 1.5 times the uniaxial compressive strength (in triaxial
cell terms).

Stress ratio 1/0 Stress ratio 1/1
2 W - 2
S T
o £
5 o 3l £
K2 =
» )
4 2
- [
n =
n
—8— Exp. slel o —B—Exp.slel
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—>— Num s1,e2 —>—Num s1,e3
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Strain (e) * 1000 Strain (e) *1000

Fig. 12. Example 4. Compressive test data from Kupfer, Hilsdorf and Rusch.
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Fig. 13. Example 5. Triaxial test data from Kotsovos and Newman.

It has been proved for certain restricted cases that the model satisfies the second law of thermodynamics,
and furthermore for other cases it has been demonstrated that for parameter ranges typical for structural
concrete the model does always predict non-negative dissipation.

Two particular future developments to the model are planned, as follows

e an optional closed yield surface with curved meridians which is able to simulate crushing effects at high
triaxial confinements

e frictional behavior in the crack plane model (as in Jefferson, 2002b) to simulate crack unloading/reload-
ing hysteretic effects, although again this is intended to be a model option.
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Appendix A

This appendix presents details of the local and global stress and strain vectors, transformation rules and
elastic constitutive matrices.

The POD, along with its defining local and global coordinate systems, are shown in Fig. 14.

The local stresses are related to global by the following transformation

si =No (A.1)
where i presents the POD number.
]T

T and
s=[s s ] and o6=[0n 0, 0. Ty T Tx

> 2 2
rh Th T 2rara 2Fpra 2rara
_ |2 22
N= |55 53 Si3 25aSa2 250543 2541543
> 5 2
ot ti 2tater 2totss 2taitgs

rai, Fa2, a3 are the x, y, z components of the unit vector ry, normal to the POD surface, and similarly s4 and
tq are the in-plane vectors. s4 is generated in the same way that Hasegawa (1995) generated shear directions
for micro-planes, in that the directions are chosen orthogonal to rq and to each of the reference axes in turn,
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y r

z

Fig. 14. POD local and global coordinate systems.

i.e. for plane 1 s4 is orthogonal to z, for plane 2 s4 is orthogonal to y etc. t4 is then made orthogonal to r
and s.

When applied as direction subscripts to e and s, the d subscript on rg, sq and ty is dropped.

The local stresses are related to the normal and principal shearing stresses on the POD as follows,

o,=s, and 1= (s —|—St2)1/2 (A2)
Effective local strain and total global strain vectors are as follows
T
e = [6‘1- € € ]T and &= [Sxx &y &z ny y}z sz] (A3)

The global stress—elastic strain relationships are given by

6 = Dee, (A4)
& = C.o (A.5)
in which D, and C, are the standard 6 x 6 matrices of elastic constants in stiffness and compliance form
respectively.
The local elastic relationships are given by
s=Die. and e.=Cs (A.6)
where
E, 0 0 l/E, 0 0
D=0 E. O and Cp = 0 1/E. 0
0 0 E, 0 0 1/E;
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