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Abstract

A framework is described for the development of a thermodynamically consistent plastic directional-damage-contact

model for concrete. This framework is used as a basis for a new model, named Craft, which uses planes of degradation

that can undergo damage and separation but which can regain contact according to a contact state function. The

thermodynamic validity of the resulting model is considered in detail, and is proved for certain cases and demonstrated

numerically for others. The model has a fully integrated plasticity component that uses a smooth triaxial yield surface

and frictional hardening–softening functions. A new type of consistency condition is introduced for simultaneously

maintaining both local and global constitutive relationships as well as stress transformation relationships. The intro-

duction of contact theory provides the model with the ability to simulate the type of delayed aggregate interlock be-

havior exhibited by fully open crack surfaces that subsequently undergo significant shear movement. The model has

been implemented in a constitutive driver program as well as a finite element program. The model is assessed against a

range of experimental data, which includes data from uniaxial tension tests with and without unloading–reloading

cycles, tests in which cracks are formed and then loaded in shear, and uniaxial, biaxial and triaxial compression tests.
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1. Introduction

Numerical modeling of concrete is a mature discipline with a history that spans more than three decades,

during which time considerable advances have been made in both the underlying theories of the constitutive

models as well as in the practical capabilities of finite and boundary element codes for concrete analysis.

Given the vast body of literature produced on this subject, the need for further contributions could be

reasonably questioned. However, since research on the subject has not yet resulted in a model, or set of
models, which is able to represent the complete range of concrete characteristic behavior in a consistent and

robust manner, the author believes that present and future strivings towards the goal of a comprehensive

and robust set of numerical models for concrete are, and will be for some time to come, justified.
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During the period referred to there have been two particular state-of-the-art reviews that have described

many of the key developments up to their date of publication (ASCE, 1982; ACI, 1998). Included in these

reviews are descriptions of a class of model that received much attention in the 1970s and 1980s (Buyu-

kozturk, 1977; Owen et al., 1983; de Borst, 1986; Cervera et al., 1987). These models, which will be termed
here �plastic-cracking�, used plasticity theory to represent the compressive behavior of concrete and various

total and incremental fracture theories to simulate directional cracking on defined planes. There was

considerable variation in the plasticity and fracture components of these models, although the underlying

principles were similar. The approaches used to model cracking––which included the fixed crack, rotating

crack and multi-non-orthogonal fixed crack methods––have been reviewed in two publications (Weihe

et al., 1998; Petrangeli and Ozbolt, 1996). This type of plastic-cracking model is appealing for a number of

reasons; firstly, the behavior of concrete in compression is naturally and accurately simulated with plasticity

theory. This is because, for a wide range of uniaxial, biaxial and triaxial stress/strain paths, the inelastic
strains are permanent and therefore the unloading behavior is substantially elastic, and the behavior is

thereby in agreement with the assumptions of standard plasticity theory. This observation is borne out by

the data and simulations of Este and Willam (1994). Secondly, regarding crack modeling, the simulation of

directional cracking as strength loss on defined planes agrees with macroscopic observations of crack

formation. Furthermore, the author would contend that the approach is also reasonable for simulating the

behavior observed during tensile micro-cracking, as, for example, seen in micro-imaging studies reported by

van Mier (1997) and Karihaloo and Jefferson (2001), although it is recognized that because the model is

phenomenological in nature, and not based on the micro-structure of the material, it will only simulate the
macroscopic effects of micro-cracking in an approximate manner. These earlier models were in various

ways flawed. The fixed crack approach produced over stiff results and relies on a somewhat arbitrary shear

retention factor (Crisfield and Wills, 1989). The rotating crack model can not simulate post crack shear

response on a crack plane and also relies on the questionable device of computing Poisson�s ratio from

current stress and strain components such that the coaxiality of the principal stresses and strains is

maintained (Rots, 1988; Petrangeli and Ozbolt, 1996; Feenstra and de Borst, 1995). The disadvantages of

the multiple non-orthogonal crack theory, which is in many respects the most appealing of the approaches,

have been summarized by Feenstra and de Borst (1995). These disadvantages relate to the computational
and algorithmic difficulties associated with combining plasticity and fracture and the problems of simu-

lating state changes, e.g. crack closure.

None of the models referred to above were explicitly developed within thermodynamically consistent

theoretical frameworks and certain aspects of the model formulations were rather ill-defined. This is not

surprising since, at the time many of these models were developed, appropriate theoretical frameworks

for combining the fracture and plasticity components of such models were in an early stage of deve-

lopment. The situation is now quite different due to the major developments in constitutive theories that

have occurred over the past twenty years. The developments include new damage based models and
theories (Krajcinovic, 1996; di Prisco and Mazars, 1996; Comi and Perego, 2001), advanced plasticity

based models for general concrete behavior (Yang et al., 1985; Han and Chen, 1987; Este and Willam,

1994) and for cracking behavior (Feenstra and de Borst, 1995), formulations for combining plasticity and

damage (Ortiz, 1985; Simo and Ju, 1987; Hansen and Schreyer, 1994; Ekh and Runesson, 2000), plastic-

damage models (Klisinski and Mroz, 1988; Lubiner et al., 1989; Abu-Lebeh and Voyiadjis, 1993; Luc-

cioni et al., 1996; Lee and Fenves, 1998; Meschke et al., 1998; Carol et al., 2001a,b) and the development

of the micro-plane model (Bazant et al., 2000; Carol et al., 2001b; O�zzbolt et al., 2001). Also Armero and

Oller (2000) have considered conditions for the thermodynamic validity of models with directional
damage surfaces, which is of particular relevance to the present work. It is noted that there are many

other valuable contributions not included in this list, but many are included in a wide ranging recent

review paper on plasticity and damage, in which there is particular reference to non-local formulations,

by Bazant and Jirasek (2002).
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Within many of the above publications there is recognition that both plasticity and damage are required

to simulate concrete behavior well, but the complexity of simulating key characteristics of concrete be-

havior such as increasing deviatoric strength with increasing triaxial confinement, non-linear behavior in

compression, loss of tensile strength with compressive crushing, softening in tension leading to the for-
mation of fully formed stress-free cracks, aggregate interlock on partially and fully formed cracks, crack

opening and closing with both shear and normal crack surface movements, all within the same framework

means that no one model is yet able to simulate well all of these characteristics.

In some respects the older plastic-cracking models had, at least nominally, greater success at simulating

certain of the above characteristics than many of the new models, yet the theoretical and practical flaws

have understandably led to little work being carried out on them in recent years. However, the author

believes that a model that employs modern plastic-damage theory and yet retains certain of the features of

the early plastic-cracking models is an attractive proposition; not least because such models work with
defined crack planes and therefore have the potential to simulate crack opening and closing behavior and

post-crack shear behavior on fully formed crack planes accurately. Furthermore, if a transition to a discrete

crack is desired, the crack plane orientation and state variables are directly available, although it is recog-

nized that the process of transferring properties to discrete cracks, when multiple cracks are involved, may

be problematic. The development of such a model is subject of this paper.

A thermodynamically consistent framework is described and this is used as a basis for a new model,

although as may be seen later, it did not prove possible to derive analytical proofs of thermodynamic

consistency for absolutely all cases. The damage, or contact, matrix is generated from planes of degradation
(POD is terminology from Weihe et al., 1998), each of which is formed when a damage criterion is satisfied.

The POD aspect of the model employs some of the transformation relationships and theory of earlier non-

orthogonal crack models (de Borst and Nauta, 1985; Rots, 1988); however, the new model is quite different

in that it is developed in a formal plastic-damage-contact (p-d-c) framework, properly couples the response

of all PODs via a new consistency condition that enforces the total and local governing constitutive

equations and employs a new crack plane model which simulates normal and shear degradation as well as

crack closure effects. The fracture aspect of the model is fully integrated with a hardening/softening fric-

tional plasticity component that uses a smoothed triaxial plastic yield surface developed from that used by
Lubiner et al. (1989).

The crack plane model, that relates the local stresses to local strains, is a simplified version of a general

crack plane model which uses contact mechanics to simulate crack closure with both shear and normal

displacements, and thereby aggregate interlock (Jefferson, 2002a), and which uses multiple components to

simulate the gradual transition of material fractions from a bonded undamaged state to a debonded

damaged state during crack formation (Jefferson, 2002b).
2. Theoretical framework

2.1. Overall framework

The model employs plasticity, damage and contact theory in the formulation and thus has been classified

p-d-c rather than the more commonly used classification of plastic-damage.

Definitions of the local and global stress and strain vectors, transformation relationships and elastic

constitutive matrices are given in Appendix A. It is noted that the six-component vector form of Cartesian

stress and strain tensors is used here.

A contact matrix (Mc) is defined that has contributions from each POD. If no POD has formed then
Mc is equal to the identity matrix.
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The overall relationship between total stresses and strains is given by
r ¼ McDeðe� epÞ ð1Þ
in which ep is a plastic strain tensor.

The local stress–effective strain relationship, for a POD i, is given by
si ¼ Dlsiei ð2Þ
in which Dls is a local constitutive matrix, the form of which will be discussed in Section 3.

The local strains, ei, are the total effective local strains on a crack-plane. The added �fracture� local strain
vector is denoted ef i and is related to the effective strain vector as follows
ef i ¼ ei � CLsi ð3Þ

ef i ¼ Clsf isi ð4Þ
where Clsf is a local compliance matrix.

It is emphasized that the primary crack plane variables used in these model computations are e and s,

and not ef and s. This has the advantage that the model can be developed in terms of total local relative

displacements (converted to strains), which means that experimental data can be used directly to develop

governing functions.

Eq. (4) is used along with the stress transformation (A.1) to form the constitutive matrix as follows
r ¼ Deðe� ep � efÞ ¼ De ðe
 

� epÞ �
Xnp
j¼1

NT
j ef j

!
¼ De ðe

 
� epÞ �

Xnp
j¼1

NT
j Clsfjsj

!

¼ De ðe
 

� epÞ �
Xnp
j¼1

NT
j Clsf jNjr

!
ð5Þ
and
r ¼ I

 
þDe

Xnp
j¼1

NT
j Clsf jNj

!�1

Deðe� epÞ ¼ Defcðe� epÞ ð6Þ
in which I is the identity matrix and np is the number of PODs.

The strain tensor ðe� ep � efÞ will be referred to as the �elastic� strain tensor and ðe� epÞ will be referred
to as the �recoverable� strain tensor.

The contact matrix is given by
Mc ¼ I

 
þDe

Xnp
j¼1

NT
j Clsf jNj

!�1

ð7Þ
Alternatively Eq. (6) may be written in terms of the compliance matrix as follows
ðe� epÞ ¼ Cefcr ð8Þ

in which
Cefc ¼ Ce

 
þ
Xnp
j¼1

NT
j Clsf jNj

!
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2.2. Thermodynamic restrictions

The model should obey the first and second laws of thermodynamics and produce non-negative energy

on any loading cycle. Considering mechanical energy alone, the second law may be expressed as (Meschke
et al., 1998)
rT _ee� _WWT P 0 ð9Þ

_WWT is the Helmholtz free energy which here comprises two components, one the elastic recoverable strain

energy _WW and the other the latent, or locked in, energy _WWL as follows
_WWT ¼ _WWþ _WWL ð10Þ
It will be assumed here that _WWL is non-negative and is equal to a positive fraction of the total work rate

minus the rate of change of stored elastic energy. Thus, to show that the model is dissipative, it is sufficient

to prove that
rT _ee� _WWP 0 ð11Þ

w ¼ 1
2
ðe� epÞTDefcðe� epÞ ¼ 1

2
rTCefcr ð12Þ
It is noted that (12) applies to the case for which Cefc simulates unloading to a stress free state in a linear
manner.

Using (8) and (12) in (11) gives
rT½ _CCefcrþ Cefc _rrþ _eep� � 1
2
ð _rrTCefcrþ rT _CCefcrþ rTCefc _rrÞP 0 ð13Þ
If the part associated with plastic straining is separated from the rest of the equation, then (13) is satisfied if
rT _eep P 0 ð14aÞ
and
rT _CCefcrþ rTðCefc � CT
efcÞ _rrP 0 ð14bÞ
By using (8) in (14b) and applying the transformation (A.1) it may be shown that (14b) is satisfied if the

local form is satisfied for all PODs i as follows
sTi
_CClsf isi þ sTi ðClsf i � CT

lsf i
Þ_ssi P 0 ð15Þ
The conditions (14a) and (15) are those required for ensuring that the model always predicts non-negative

dissipation on a closed loading cycle. The conditions have been derived allowing for the possibility that
both Cefc and Clsf are asymmetric.
3. Model components

3.1. Local damage-contact relationships

The essential idea of the fracture part of the model is to use the stress–strain relationship of an effective

crack plane to generate a relationship between added local fracture strains and local stresses.

The local stress–effective strain model employs a simplified version of the effective crack plane model
developed by the author (Jefferson, 2002b), but here only the damage and contact components are used. It

is noted that here local strains rather than relative-displacements are used, but that the strain parameters
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depend upon a characteristic length and the fracture energy per unit area following the approach of Bazant

and Oh (1983). In finite element applications this characteristic length is dependent on the element size

(Bazant and Oh, 1983; Oliver, 1990).

In the crack plane model it is assumed that a representative volume comprises two components of
material: (i) undamaged material and (ii) fully-debonded material. The proportions of material in each

component, per unit representative area, are denoted hc and hf respectively and hc and hf must satisfy the

following conditions
hc þ hf ¼ 1; 06 hc 6 1; 06 hf 6 1 ð16Þ
If the h terms are compared with those used in an isotropic damage model, in which the scalar damage

variable is x, then hc ¼ 1� x. hc is a function of a scalar damage variable f, and hf depends upon the

contact condition and the state of damage. The local stress is the sum of the stresses on the two components

as follows
s ¼ hcðfÞDLeþ hfðf; eÞsf ð17Þ
in which sf is the local stress vector for the fully-debonded material component.

Following Jefferson (2002a), three states of contact are defined for a crack plane that are termed open,

interlock and closed. These are illustrated in Fig. 1 in local strain space.

Experimental evidence suggests that once a crack has opened on a plane, contact can be regained with

shear, as well as normal, movement and that the contact surface can be reasonably simulated with a linear

function in strain space (Jefferson, 2002a), as shown in Fig. 1.

In the open state the stress in the debonded component is assumed zero. In the interlock state the

debonded stress is derived from a contact law in which the stress is assumed to depend upon the distance (in
local strain terms) to the contact surface that is denoted by the vector g and which is termed the embed-
Fig. 1. Local contact states.
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ment. In the closed state, g is equal to the local strain vector since the contact point coincides with the origin

of the local strain space.

The interlock and closed functions used to identify which state is active are
/intðeÞ ¼ mger �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2s þ e2t

q
ð18aÞ
/clðeÞ ¼ er þ mg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2s þ e2t

q
ð18bÞ
If /clðeÞ6 0 State ¼ Closed

If /clðeÞ > 0 and /intðeÞ < 0 and er < eful State ¼ Interlock

If /intðeÞP 0 or er P eful State ¼ Open
The constant mg can be obtained from experimental data from tests in which shear is applied to an open
crack, for example from the tests conducted by Walraven and Reinhardt (1981). In Jefferson (2002a) mg was

taken as a constant of value 0.3 but from the data presented in that reference it is considered that a rea-

sonable range for mg for normal strength concrete is 0.3–0.6. It was found that a low value of 0.3 could lead

to second cracks forming at shallow angles to the first, due to the development of relatively large shear

forces, and therefore a larger value of 0.5 is recommended as the default.

In the interlock state the direction of g is fixed by the normal to the interlock function and therefore the

embedment can be expressed in terms of the positive scalar g (always positive in the interlock state) and the

normal as follows
g ¼
�
� o/int

oe

o/int

oe

����
� ����

�
g ¼ nig ð19Þ
The embedment may also be obtained from a transformation of the local strains as follows
g ¼ Uge ð20Þ
where
Ug ¼
1

1þ m2
g

o/int

oe

� �
o/int

oe

� �T
 

þ /int

o2/int

oe2

!
ð21Þ
There is a crack opening strain beyond which no further contact can be gained in shear and this is denoted

eful. In this implementation of the model, eful is made a multiple of e0, i.e. eful ¼ mfule0. Trials suggest that
when concrete contains relatively large coarse aggregate i.e. 20–30 mm, a value of mful in the range 10–20 is

appropriate, whereas for concrete with relatively small coarse aggregate, i.e. 5–8 mm, a lower value is

appropriate, in the range 3–5. This variation is necessary because the relative displacement at the end of a

tension-softening curve (related via the characteristic dimension to e0) is not in direct proportion to the

coarse aggregate size, whereas, as was shown in Jefferson (2002a,b), the clearance displacement is roughly in

proportion to the coarse aggregate size. Thus eful is not in a fixed ratio to e0.
As a crack opens the relative proportion of debonded material that can regain contact in shear reduces as

crack opening increases. Walraven and Reinhardt (1981) developed two linear functions that relate normal
and shear displacements to the associated stresses. A function for hf that, when applied in Eq. (17), fits these

linear relationships with reasonable accuracy is given below
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hf ¼ ð1� hcÞHf

Hf ¼ Hm if er < et

Hf ¼ Hm rfe
�qf1

eg�et
e0

� �2
8<
: þ ð1� rfÞe

�qf2
eg�et
eful

� �2
9=
; 1
�

� e�cg
g

egþ2et

� ð22Þ
where rf ¼ 0:95, qf1
¼ 4, qf2

¼ 1:5, cg ¼ 3, et is uniaxial strain at first fracture and e0 is the strain at the

effective end of the softening curve, as illustrated in Fig. 2. Hm is set to 0.995 rather than 1 for reasons

explained in Section 6, which discusses the thermodynamics of the model.

Hf may be thought of as representing the proportion of the damaged material on a POD that is in
contact. The function is smooth with respect to the opening displacement eg and also provides a smooth,

though rapid, transition to Closed and Interlock states, via the last term in Eq. (22). The latter term can,

however, be set to unity for single point constitutive simulations. The purpose of using smooth functions is

to improve the convergence properties of the model when implemented with Newton iterative solution

algorithms.

Here, the variable eg, which is defined in Fig. 1, is used to measure the opening displacement rather than

component er. The advantage of using eg is that unloading along g to the surface is linear and thus the free

energy associated with interlock contact takes a familiar quadratic form. eg is related to the components of
the effective local strain, as follows
eg ¼
1

1þ m2
g

e1

�
þ mg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e22 þ e23

q 	
ð23Þ
In direct tension the damage model should produce the type of characteristic softening curve shown in Fig.

2. When the material has experienced a degree of �crushing� in compression there is a general loss of tensile

strength (Kupfer et al., 1969), and in the present model this is simulated with an increase in damage and a

reduction in the first fracture stress. It is recognized that apparent �crushing� in, for example, a concrete

cube test largely involves diffuse cracking and therefore its simulation with increased damage is considered
reasonable.
hc ¼ rc
et
f
þ ð1
�

� rcÞ
et
f
e�c2

f�et
e0�et

	
e�2 j

jp ð24Þ
where the first fracture strain et ¼ ft=E, ft is the tensile strength and E the Young modulus.
The terms j and jp are the plastic parameter and peak plastic parameter values, respectively. These are

explained in context, in Section 3.2. The constant c2 is set to a fixed value of 5.
er

Normal stress

ft

ε0εt

Fig. 2. Characteristic tensile softening curve.
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In Eq. (24) the damage strain parameter f is set to an initial value of et. The first term in (24) serves to

provide residual damage strength that is useful for stabilizing numerical calculations and maintaining a

residual damage stress. rc was set to 0.01 for the constitutive simulations in the present paper.

A POD is assumed to form when the principal stress reaches the fracture stress (ft), with the POD being

normal to the major principal axis. Thereafter, it is assumed that damage on the plane can occur with both

shear and normal strains. The damage surface, which is similar to that used by Kroplin and Weihe (1997)

and is illustrated in Fig. 3, is as follows
/ðe; fÞ ¼ er
2

1

"
þ le

rf

� �2
#
þ 1

2r2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2f � l2

e


 �2
e2r þ 4r2f e2s þ e2t


 �q
� 1 ð25Þ
The material constants rf and le are the strain equivalents of the relative shear stress intercept rr ¼ c=ft and
the asymptotic friction factor l, noting that c is the shear stress intercept. These, the stress ratios, are set to
0.8 and 0.5 respectively.

The constitutive relationship for the effective crack plane can now be written
s ¼ DLðhceþ hfgÞ ¼ DLðhcIþ hfUdÞe ¼ Dlse ¼ DLMxe ð26Þ
where
Ud ¼ 0 if State ¼ Open

Ud ¼ Ug if State ¼ Interlock

Ud ¼ I if State ¼ Closed
Using Eqs. (3) and (4), the relationship between the stress and added fracture strain can be derived to be
ef ¼ ðM�1
x � IÞCLs ¼ Clsfs ð27Þ
Alternatively, the added fracture strains may be expressed in terms of the effective local strains as follows
ef ¼ ðI�MxÞe ð28Þ
3.2. Plasticity component

3.2.1. Triaxial behavior

Experiments on concrete in compression show a number of characteristic features (Kotsovos and

Newman, 1979), which include;
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• significant non-linearity up to a peak stress with post-peak softening thereafter,

• increased deviatoric strength with triaxial confinement,

• unloading–reloading behavior that is near elastic until well into the post-peak range, except under high

confining pressures.

A relatively simple, but powerful, plasticity component is included in the present model. A smooth

triaxial yield surface is developed from the yield function used by Lubiner et al. (1989) and from Willam

and Warnke�s (1975) smoothing function. Since a consistent formulation is to be used in the final imple-

mentation, the second derivative of the yield function is required, and therefore it was considered expedient

to use a relatively simple yield surface with straight meridians.

The model includes friction hardening and softening to account for pre and post peak non-linear be-

havior, and uses work hardening in which the total work required to reach the peak stress envelope is made
a function of the mean stress. The model is developed with a dilatancy parameter that allows plastic flows

to be associated or non-associated, although to simulate experiments accurately non-associated flow is

required.

The accuracy of the model reduces for stress states with high triaxial confinement because the model

does not simulate non-linearity under hydrostatic compression and the yield function has straight meri-

dians. This is quantified in Section 7, where a confining limit is suggested beyond which the model is

considered inaccurate.

3.2.2. Yield function

The yield function adopts the same meridians, in octahedral stress space, as those used in the com-

pressive part of the model of Lubiner et al. (1989), however, to avoid having discontinuities in the pi-plane,

as in the Lubliner surface, the smoothing function of Willam and Warnke (1975) is employed. This

smoothing function simplifies considerably if the eccentricity parameter (q) is set to a constant value of

1=
ffiffiffi
2

p
. The resulting function is as follows
F ðr; ZðjÞÞ ¼
ffiffiffiffi
J2

p
ArðhÞ þ a

�
þ c
3

�
I1Z � fcZð1� aÞ ð29Þ
where
ArðhÞ ¼ qc

2 cosðhÞ2 þ b2

cosðhÞ þ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosðhÞ2 þ c

q
0
B@

1
CA
and I1 is the first stress invariant, J2, the second deviatoric stress invariant, h is the Lode angle (with range

0–60�) and Z is a friction hardening factor, which is a function of the work hardening parameter j. Z varies

from a possible value of 0, at which the yield surface degenerates to a line on the hydrostatic axis, up to 1 at
the peak surface position. The initial position of the yield surface is governed by the initial value of Z ¼ Z0.

For most situations in which the degree of triaxial confinement is relatively low, a value of between 0.5 and

0.6 is considered appropriate for Z0 however, for higher confinements a lower value of 0.25 is better. The

boundaries between �low and high confinements are discussed under Example 5 in Section 7.

The material parameters required to define the constants are the uniaxial compressive strength fc and the

ratio between the biaxial and uniaxial strengths br, which is generally in the range 1.05–1.3 (Kupfer et al.,

1969; van Mier, 1997). The constants in Eq. (29) are then obtained, in the manner described by Lubiner

et al. (1989), using the following expressions
a ¼ br � 1

2br � 1
; b ¼

ffiffiffi
2

p
� 1; c ¼ 5

2
� 2

ffiffiffi
2

p
; q ¼ 1=

ffiffiffi
2

p
; c ¼ 3ð1� qÞ

2q� 1
; qc ¼

ffiffiffi
3

p
þ cffiffiffi

3
p
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A comparison between the experimentally determined curves of Kotsovos and Newman (1979) and the

meridians from the yield surface is shown in Fig. 4. A comparison with the surface of Lubiner et al. (1989)

in the pi-plane is shown in Fig. 5.
3.2.3. Plastic potential and flow rule

The plastic potential function, given below, is obtained directly from (29) but an additional parameter

(w) is added which can be used to control the degree of dilatancy. Associated flow is achieved if w ¼ 1, but it

was found that w values in the range )0.1 to )0.3 were required to match experimental data. Generally w is
set to )0.1, but for high degrees of triaxial confinement )0.3 provides a better match to experimental data.
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Gðr; ZðjÞÞ ¼
ffiffiffiffi
J2

p
ArðhÞ þ a

�
þ c
3

�
I1Zw� fcZwð1� aÞ ð30Þ
The flow rule is derived from the plastic potential in the standard way as follows
_eep ¼
oG
or

_kk ð31Þ
k is the plastic multiplier, which obeys the condition _kkP 0.

The restriction on w, supplied by expression (14a), may be expressed as
rT oG
or

P 0 ð32Þ
and is satisfied if wP�1.

3.2.4. Hardening/softening relationships

A work hardening hypothesis is made for the present model, and it is assumed that the amount of work

to achieve peak stress increases with the mean stress, according to a parameter X . This parameter performs

essentially the same role as the ductility parameter of Este and Willam (1994). The work hardening
parameter, expressed in rate form, is given by
_jj ¼ X ðrÞrT _eep ð33Þ
A single friction hardening/softening function for Z has been adopted which gives a smooth transition from

pre- to post-peak behavior, as follows
Z ¼ Z0 þ
ð1� Z0Þ

ac
e�cc1gð1� e�cc2gÞ ð34Þ
where g ¼ j=jp, jp, the value of j at the peak yield surface position; and to ensure that the peak occurs at

Z ¼ 1, the constants of (34) must satisfy the following relationships cc1 ¼ cc2e
�cc2

1�e�cc2 and ac ¼ e�cc1ð1� e�cc2Þ.
The actual values used are cc2 ¼ 5, cc1 ¼ 0:0339182745 and ac ¼ 0:9601372615.

The following expression for jp was derived by integrating Saenz�s (1964) equation over a uniaxial

stress–strain curve in compression and then removing the elastic component, using data typical for
structural concrete
jp ¼ fc 0:72ec

�
� fc
2E

�
ð35Þ
in which ec is the uniaxial compressive strain at the peak uniaxial compressive stress (fc).
The expression used for the enhancement factor is as follows
X ¼ ev þ ev�1 þ XI ð36Þ
where v ¼ I1=ðfc � 0:9Þ þ 0:55 and XI ¼ 0:0022 it should remembered that the enhancement factor will

never be required for stress states for which I1 is positive i.e. tensile.
4. Constitutive matrix and stress update computations

For the finite element implementation of the model, a consistent algorithm was developed for the tangent

matrix and stress recovery computations following the principles established for computational plasticity
by Simo and Taylor (1985), but extending the approach to the present p-d-c model. This algorithm is

described in a linked publication Jefferson (2003), but here the more standard form of the tangent con-
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stitutive matrix and stress recovery algorithms are described, which were employed for much of the work on

the single point stress/strain path simulations.
4.1. Tangent constitutive matrix

The stress–strain rate relationship may be written as follows, if any variation in Ni is ignored.
_rr ¼ De ð_ee
 

� _eepÞ �
Xnp
j¼1

NT
j _eef

!
ð37Þ
The local stress–strain rate relationship for each POD is considered as follows, noting that here the POD

subscript is temporarily dropped for clarity.
_ss ¼ DL Mx

��
þ oMx

oe
e

�
_eeþ oMx

oj
e _jj

	
¼ DL M0

x _ee
�

þm0
j _jj
�

ð38Þ

_ee ¼ M0�1
x ½CL _ss�m0

j _jj� ð39Þ

_eef ¼ ðM0�1
x � IÞCL _ss�M0�1

x m0
j _jj ¼ Cltf _ss� -j _jj ð40Þ
where
M0
x ¼ Mx þ

oMx

oe
� e

-j ¼ M0�1
x m0

j

oMx

oe
� e ¼ dhc

df
e
ofT

oe

 
þ dhf

df
e
ofT

oe

 
þ dhf
deg

e
oeTg
oe

þ dhf
dg

e
ogT

oe

!
Ud

!

m0
j ¼

ohc
oj

eþ ohf
oj

Ude
in which � denotes a general matrix vector contraction.

The relationship between the local and global stress rates is as follows
_ssi ¼ Ni _rr ð41Þ
It is noted that in the consistent algorithm the rate of Ni is also included, which is only non-zero within the

increment a POD first forms.

Substituting for _eep and _eef in Eq. (37), using (31) and (40) respectively gives
_rr ¼ De _ee

� 
� oG

or
_kk

�
�
Xnp
j¼1

NT
j ðCltf _ss� -j _jjÞ

!
ð42Þ
Substituting for _jj from (33), for _ss from (38) and rearranging gives
_rr ¼ Dtefcð_ee� gm
_kkÞ ð43Þ
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in which
Dtefc ¼ I

 
þDe

Xnp
i¼1

NT
i Cltf iNi

!�1

De

gm ¼ oG
or

�
Xn
j¼1

NT
j -jXrT oG

or
Applying the consistency condition to the yield surface gives
oF
or

T

_rrþ dF
dj

_jj ¼ 0 ð44Þ
substituting for _rr from (43) and _jj from (33) and rearranging gives
_kk ¼
oF
or


 �T
Dtefc

oF
or


 �T
Defcgm � hj

_ee ð45Þ
in which hj ¼ oF
oj Xr

T oG
or
.

Using (45) in (43) gives the tangent elasto-plastic-damage-contact matrix
_rr ¼ Dtefc

 
�

Dtefc
oG
or

oF
or


 �T
Dtefc

oF
or


 �T
Defcgm � hj

!
_ee ð46Þ
4.2. Stress recovery

4.2.1. Overall approach

The approach adopted in this stress recovery algorithm is first to update the effective local strains and then

account for any plastic flow, with the later computation employing the updated e-f-c constitutive matrix. The

plasticity equations are then satisfied using a Tangent Cutting algorithm (Ortiz and Simo, 1986).

4.2.2. Local strain update

It is important that the governing relationships between global strains and stresses (Eq. (1)); local and

global stresses (Eq. (A.1)); local stresses and effective local strains (Eq. (26)) and local effective strains,

added fracture strains and local stresses (Eq. (3)) are all satisfied in the stress computations. Using these

equations, a set of coupled equations may be derived in which the unknowns are the effective local fracture

strains of each POD (ei) as follows
fei ¼ Ni De ek
�"

� ek�1
p

�
�
Xnp
j¼1

NT
j I



�Mxj

�
ekj

#
�Dlsie

k ¼ 0 ð47Þ
The superscript k denotes the iteration number and update is from the last iteration, which is in contrast to

the more rigorous consistent FE version of the algorithm in which all updates are made from last converged

state. These non-linear equations are solved using a Newton–Raphson approach. Typically one to two

iterations are required for a case with a single POD, three iterations for two PODs and five iterations for

three PODs. The name total–local function is introduced for Eq. (47) because it maintains, simultaneously,

the local and total constitutive governing relationships. Once any new PODs have been formed and the

local strains updated using Eq. (47), the secant elastic-damage-contact matrix (Defc) is formed and the trial
stresses computed for the plasticity stress reduction phase.
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A restriction which the author has chosen to place on (47) is that relationship between the effective local

strains (ei) and the total �elastic� strain tensor (e� ep) should always be unique. This places some restrictions

on the form of the local stiffness matrix that will be discussed in Section 5.

4.2.3. Update algorithm

The trial stress is first computed from Eq. (48), the yield function is then checked and if the yield function

value exceeds zero, Eqs. (49)–(51) are applied sequentially until the yield function converges to within a

given tolerance of zero, at which point the global stress r is updated to the value rtr.
rtr ¼ Dk
efcðek � ek�1

p Þ ð48Þ

Dk ¼ F ðrtr; ZðjÞÞ
oF
or


 �T
Defc

oG
or
� hjðjÞ

ð49Þ

rtr ¼ rtr �
oG
or

Dk ð50Þ

Dj ¼ X ðrtrÞrT
tr

oG
or

Dk : j ¼ jþ Dj ð51Þ
in which D denotes the change in a variable and superscript k denotes the overall iteration number.

It is noted that the value of j used in the evaluation of Defc is that from the last iteration, and since this

secant form has accounted for changes in j, it is appropriate here to use oG=or, rather than gm, in the
denominator of Eq. (49).

It is emphasized that this algorithm is only suitable for relatively small steps, as may be used in simu-

lations with a constitutive driver, but the use of this stress update with the tangent matrix given in (46)

would be unwise in a finite element implementation, in which strain step sizes can be much larger.
5. Implications of different forms of local elastic constitutive matrix

A general form of the local elastic constitutive matrix is given below in Eq. (52).
DL ¼
En 0 0

0 Es 0

0 0 Es

2
4

3
5 ð52Þ
A number of options for the values of En and Es were considered during the development of the model. The
first, which is perhaps the natural choice, is that En ¼ E (Young�s modulus) and Es ¼ G (the elastic shear

modulus), such that the relationship between local stresses and effective local strains is based on the uniaxial

elastic and shear moduli. Noting that G ¼ E=2ð1þ tÞ.
A second option is based on the observation that DL ¼ NiDeN

T
j for i ¼ j, if En ¼ Eef and Es ¼ G. With

this form of DL Eq. (47) reduces to
N1Delðe� epÞ ¼ DLe1 ð53Þ

Eef ¼ E
1� t

ð1þ tÞð1� 2tÞ for 3D; plane strain and axisymmeric cases

Eef ¼ E
1

ð1� t2Þ for the plane stress case
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This means that for the one POD case there is a direct relationship between the local effective strains and

the recoverable strains (e� ep).

A third option was considered because the thermodynamic restriction summarized in inequality (15)

simplifies to the more manageable form shown in Eq. (54) if Clsf is symmetric. The forms considered in
options one and two both result in Clsf being non-symmetric in the interlock state, however if En ¼ Es then

both Dls and Clsf are always symmetric since Ud is always symmetric.
sTi
_CClsf isi P 0 ð54Þ
Options one and two are similar with Es being the same for both options and Eef being typically within 10%

of E. Since option two leads to a simplification of Eq. (47) only option two will be discussed further.

The thermodynamic assessment of the model will be made for both the symmetric and the asymmetric

forms of Clsf and it is noted that both options were implemented. However for option two, the ratio be-

tween the normal and shear stiffness is consistent with the properties of a band of elastic material, which

suggests that data from shear-normal tests can be used directly to calibrate the model. Furthermore, option

two proved to provide better fits to experimental data, as may be seen in Example 3 of Section 7, than
option three. Therefore option two was the one chosen for the finite element simulations in the associated

paper. The decision to use option two is however tentative because it did not prove possible to derive a

formal proof that the model with this asymmetric form of Clsf satisfied the second law of thermodynamics

for all cases, whereas such a proof was possible for the symmetric case, at least for 2D problems.
6. Thermodynamic assessment

6.1. Plasticity component

The general thermodynamic restrictions were summarized in expressions (14a) and (15). Dealing first

with the plasticity component, it may be concluded that (14a) must be satisfied for all stress states because

the yield function is convex, the plastic multiplier is non-negative and condition (32) is satisfied.
6.2. Damage-contact component

6.2.1. Open state

In the open state Clsf reduces to the form shown in Eq. (55), and the inequality (15) reduces to that

shown in (56)
Clsf ¼
1

hc

�
� 1

�
CL ðfor open stateÞ ð55Þ
½sTi CLsi�
�1

h2c

dhc
df

� �
_ff

�
þ dhc

dj

� �
_jj

�
¼ ½sTi CLsi�

�1

h2c
_hhc P 0 ð56Þ
CL is diagonal and positive for both options and therefore the term in square brackets must be non-

negative. Also, hc P 0 (Eq. (16)), dhc=df6 0 and dhc=dj6 0 (Eq. (24)), _hhc 6 0, _ffP 0 and _jjP 0, therefore

inequality (56) must be satisfied.
6.2.2. Closed mode

In the closed state Clsf reduces to CL and thus inequality (15) is satisfied.
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6.2.3. General interlock state case

As explained in Section 5, using option three for DL resulted in Clsf being symmetric and inequality (15)

reducing to that shown in Eq. (54).

The sources for changes in Clsf , that are represented by _CClsf in Eq. (54) are divided into two categories;
firstly those resulting from changes in the proportion of damaged material that is in contact (Hf ) and

secondly those resulting from changes in the basic material components hc and (1� hc).
Dealing with the first source changes; the total–local function (47) ensures that the local and global

constitutive conditions are simultaneously satisfied and that there is a always a unique relationship between

the global recoverable strains (e� ep) and the local strains ei on each active POD i. Hfi is a function of ei and

the local stresses si are also functions of ei, therefore any closed cycle of the global strain tensor, that in-

volves no plasticity and no damage, must return to the starting values of si and r. Thus, under these

conditions, the model predicts zero dissipation for both symmetric or asymmetric forms of Clsf .
6.2.3.1. Plane-stress case with C lsf option 3. With reference to the second source of changes, a two-di-

mensional plane stress case will be considered first, because for this case it proved possible to derive a

compact analytical form to show that inequality (54) is satisfied by the present model for option three for

which En ¼ Es. If the shear strain component is positive then Mx is equal to
Mx ¼
hc 0

0 hc

� 	
þ Hfð1� hcÞ

1þ m2
g

m2
g �mg

�mg 1

� 	
ð57Þ
It noted that that the final expression derived below does not depend on the sign of e2.
Using the inverse of Mx from (57) in (27) gives the following form for Clsf
Clsf ¼
1

En

�hc � hcm2
g � Hf þ Hfhc

ð1þ m2
gÞhcð�hc � Hf þ HfhcÞ

mgHfðhc � 1Þ
ð1þ m2

gÞhcð�hc � Hf þ HfhcÞ
mgHfðhc � 1Þ

ð1þ m2
gÞhcð�hc � Hf þ HfhcÞ

�hc � hcm2
g � m2

gHf þ m2
gHfhc

ð1þ m2
gÞhcð�hc � Hf þ HfhcÞ

2
6664

3
7775�

1

En
0

0
1

En

2
664

3
775 ð58Þ
and
oClsf

ohc
¼ 1

En

�1� m2
g þ Hf

ð1þ m2
gÞhcð�hc � Hf þ HfhcÞ

mgHf

ð1þ m2
gÞhcð�hc � Hf þ HfhcÞ

mgHf

ð1þ m2
gÞhcð�hc � Hf þ HfhcÞ

�1� m2
g þ m2

gHf

ð1þ m2
gÞhcð�hc � Hf þ HfhcÞ

2
6664

3
7775

þ �hc � hcm2
g � Hf þ Hfhc mgHfðhc � 1Þ

mgHfðhc � 1Þ �hc � hcm2
g � m2

gHf þ m2
gHfhc

� 	
2hc þ Hf � 2Hfhc

Enð1þ m2
gÞ

2h2cð�hc � Hf þ HfhcÞ2

ð59Þ

Noting that here only changes in Hf due to changes in hc are being considered,
_CClsf ¼
oClsf

ohc
_hhc ð60Þ
If _CClsf is symmetric positive definite then the quadratic condition (54) must hold. This can be proved by

showing that the matrix has all positive eigenvalues or, equivalently, by showing that it is an Hermitian

matrix for which the minor principals are positive. For the present 2 · 2 matrix the latter may be sum-
marized for a general matrix A by
A11 > 0 and jAj > 0:
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From (59) and (60) the determinate of _CClsf may be shown to be the following
j _CClsf j ¼
�ð _hchcÞ2ðHf � 1Þ

E2
nh

2
cð�hc � Hf þ HfhcÞ2

ð61Þ
If Hf is less than unity, the determinate is always positive. Since this is zero when Hf ¼ 1, which implies at

least one zero eigenvalue and that the matrix is non-invertible, an upper limit of 0.995 is placed on Hf , as

noted earlier.

From Eq. (59)
oClsf

ohc 1;1

_hhc ¼
h2c ð1� HfÞ2 þ m2

gð1� HfÞ
h i

þ 2hcHfð1� HfÞ þ H 2
f

Enð1þ m2
gÞh2cðHfhc � Hf � hcÞ2

ð� _hhcÞ ð62Þ
and with 0 < hc < 1, 0 < Hf < 1, 0 < mg < 1 and _hhc 6 0 this is always positive.

Thus, for the plane-stress case it is proved that the model satisfies the second law of thermodynamics
with this symmetric form of Clsf .

6.2.3.2. 3D case with C lsf option 3. For the general 3D case it did not prove possible to derive an analytical

form for the principal minors or the eigenvalues, however a compact form has been derived for Clsf , which

is given below, and this has been used to check the positive definiteness of _CClsf .
Clsf ¼

mg þ
hc
b

� cos h � sin h

� cos h
1

mg
� mr sin

2 hþ hc
b

mr cos h sin h

� sin h mr cos h sin h
1

mg
� mr cos

2 hþ hc
b

2
6666664

3
7777775

�1

1

bEn
� CL ð63Þ
in which
mr ¼
e1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e22 þ e23
p ; h ¼ arccos

e1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e22 þ e23

p
 !

and b ¼ ð1� hcÞHfmg

1þ m2
g

Using the following finite difference approximation, the normalized eigenvalues of _CClsf are given in Table

1 for a range of parameters.
oClsfðhcÞ
ohc

En sgnð _hhcÞ �
Clsfðhc þ DhcÞ � ClsfðhcÞ

Dhc
En sgnð _hhcÞ ð64Þ
noting that the derivative of Clsf is multiplied by the sign of _hhc so that the eigenvalues take the same sign as

those of _CClsf .
Table 1 shows that all three eigenvalues are always positive except when Hf is unity when, as predicted by

the 2D study above, at least one eigenvalue is zero. Checks were performed for parameter values inter-

mediate between the extreme values shown in the table and in all cases the eigenvalues were positive when

the parameters were within the specified limits (e.g. Hf < 1). From this study it is concluded, though not

formally proved, that the model with symmetric Clsf does always predict non-negative dissipation.

6.2.3.3. General case with C lsf option 2. For the general 3D case with non-symmetric Clsf it did not prove

possible to produce a compact analytical expression that proved that the model satisfies the second law of

thermodynamics. Thus, numerical checks were performed for a series of strain paths in the interlock region

in which both hc and Hf were varied. The procedure adopted was to evaluate the work per unit volume (w)
for a strain cycle, checking that the final total was positive. The strain paths used relatively small strain

increments (De) and Eq. (65) was used to evaluate w.



Table 1

Normalised eigenvalues of _CClsf

hc mg Hf h (�) mr Eigen-values

0.99 0.425 1 0 1 1.020 0 0.5183

0.01 0.425 1 0 1 1.000E4 0 2.1178

0.99 0.425 0.995 45 1 1.020 5.000E)3 0.5208

0.01 0.425 0.995 45 1 1.000E4 5.050E)3 2.1488

0.01 0.425 0.01 45 1 1.000E4 2.500E3 4.530E3

0.99 0.425 0.995 0 0.5 1.021 5.000E)3 0.3386

0.01 0.425 0.995 0 0.5 1.000E4 5.050E)3 0.7559

0.99 0.3 1 0 1 1.020 0 0.3604

0.01 0.3 1 0 1 1.000E4 0 0.8580

0.99 0.3 0.995 45 1 1.020 5.000E)3 0.3636

0.01 0.3 0.01 45 1 2.500E3 3.713E3 1.000E4

0.99 0.3 0.995 0 0.5 1.020 5.000E)3 0.2251

0.01 0.3 0.995 0 0.5 1.000E4 5.050E)3 0.3701

0.99 0.9 0.995 0 0.5 1.02031 5.000E)3 0.7075
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w ¼
X

increments

rTDe ð65Þ
Three paths are presented in Fig. 6 that include opening, closing, damaging and non-damaging sections in

interlock mode. Paths 1 and 2 start and end with zero strain whereas path 3 has a closed loop from the

strain identified as point B. In all cases the energy at the end of the closed cycle is greater than that at the

start of the cycle. The material parameters used in the checks are shown in Table 2 but these paths were also

checked with a range of different parameters which include elastic properties in the range 0.75–1.5 times the
values shown, mg in the range 0.3–0.9 and e0 in a range of 0.5–2 times the value shown. In all cases the paths

showed positive dissipation.

6.3. Final remarks

This section has proved that for all cases, except the general interlock case, the model predicts dissipative

behavior for both symmetric and asymmetric forms of local constitutive matrix. Furthermore, for the plane

stress case, non-negative dissipation is also proved for the general interlock state with the symmetric form of

local constitutive matrix. The corresponding three-dimensional idealization is also shown (though not
formally proved) using a semi-analytical study to be dissipative. For the idealization with a non-symmetric

local constitutive matrix, the interlock case did not prove amenable to analytical treatment and thus a

numerical study was undertaken to assess whether the model is still dissipative. From this study it is con-

cluded, albeit tentatively, that the model does satisfy the laws of thermodynamics even with an asymmetric

local constitutive matrix, at least when using material properties suitable for normal structural concretes.

Overall the safest option from a purely theoretical view-point would be to use the form of the model with

a symmetric local matrix, however, as will be shown in the next section, the asymmetric form produces

results closer to those observed in experimental studies, and since the numerical study has also shown this
form to be dissipative, this is the form used for the finite element simulations in the associated paper.
7. Single point stress–strain examples

A number of single point stress–strain path examples are given, which provide comparisons with test

data. The numerical analyses were undertaken using a constitutive driver program in which the Craft model
has been implemented. The material properties for each example are given in Table 3.



Table 2

Material properties used in test

E (N/mm2) m fc (N/mm2) ft (N/mm2) ec e0 bc Z0 w mg mful

40 000 0.2 50 2.8 0.003 0.002 1.15 0.6 )0.1 0.425 10
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Fig. 6. Strain path work checks.
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The model has been developed with relatively few non-fixed material parameters, and each of these
chosen parameters relates to a particular physical characteristic that could be measured experimentally. The

non-standard parameters, along with a reference to section in which they are discussed, are as follows; br
(3.2.3), Z0 (3.2.2), w (3.2.3), mg (3.1) and mful (3.1). The decisions to use only a few parameters, and to

choose only those that could be directly related to a physical characteristic were made so that users of the

model could understand the parameters and what they related to.

Example 1. In this example a comparison is made with the uniaxial tensile softening curve of Hordijk

(1991). Hordijk�s function is recognized to match well a wide range of data, and here the comparison is
carried out for the data reported by van Mier (1997). In the simulation, an assumed fracture process zone of

60 mm is used and the elastic deformations are removed from the total to give the opening displacements.

The comparison is shown in Fig. 7.



Table 3

Material properties used in examples

Example E (kN/mm2) m fc (N/mm2) ft (N/mm2) ec e0 bc Z0 w mg mful

1 35 0.15 40 3.2 0.002 0.0027 1.15 0.5 )0.1 0.4 10

2 35 0.15 40 3.2 0.0022 0.0060 1.15 0.5 )0.1 0.4 10

3 30 0.15 29.5 2.7 0.0022 0.001 1.15 0.5 )0.1 0.38 20

4 35 0.18 32 2.4 0.0021 0.002 1.15 0.5 )0.2 0.4 10

5 37 0.15 46.9 3.0 0.0023 0.003 1.1 0.25 )0.3 0.4 10
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Example 2. In this example a qualitative comparison is made with data from a test series on notched

fracture specimens carried out by Reinhardt (1984). The specimens, illustrated in Fig. 8, had an effective

area at the notch of 50 · 50 mm2. The displacements were measured with extensometers with a gauge length

of 35 mm. The data used here is from the narrow specimen tests designated LCLS (large compressive lower

stress). It was assumed, in processing the numerical results, that the characteristic crack dimension was the

gauge length used in the test. The limiting strain parameter e0 was computed from the opening displacement

at the end of the softening curve (i.e. 0.21 mm) divided by the gauge length. The present model simulates
secant reloading–unloading and full crack closure at zero axial strain (in this case), hence it was considered

only necessary to show a single unloading reloading cycle in the numerical results. The results are shown in

Fig. 9, in which the smooth transition to the closed state (See Eq. (22)) is just discernable from the graph.

Example 3. A comparison with the results from a pair of normal-shear tests undertaken by Walraven and

Reinhardt (1981). The test specimens, which are illustrated in Fig. 10, each had a shear plane of 300 · 120
mm2 and were tested in a stiff testing frame with external restraint bars used to control the crack opening.

The tests were conducted with specified initial crack opening displacements, and in each case two tests were
conducted with the same nominal openings. Once a crack had been formed to the required opening, a shear

load was applied whilst the normal and shear displacements were monitored. The results of two experi-

mental tests with initial opening displacements of 0.2 mm are shown in Fig. 11, along with the numerical

results from the constitutive driver. The numerical predictions are not as accurate with the present model,

which employs a simplified damage-contact crack-plane model, as those shown in Jefferson (2002b), but the

model does simulate the stress free zone before contact, as well as the build up of shear and normal stresses

reasonably.

Example 4. In this example comparison is made with data from a biaxial series of tests on plate type

specimens by Kupfer et al. (1969). Uniaxial and biaxial compression tests are selected and plots given for

both axial and lateral strains against the uniaxial compressive stress. Comparisons are shown in Fig. 12. It

is noted that the graphs have been plotted in the compression positive convention of the experimental data.
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Example 5. In this example, comparison is made with data from a series of triaxial tests undertaken by

Kotsovos and Newman (1979). Data from two triaxial tests are used for comparison, one with a confining

stress of 35 N/mm2 and the second with a confining stress of 70 N/mm2. The comparisons are shown in
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Fig. 13. The graphs have again been plotted in the compression positive convention of the experimental

data. It may seen from the comparisons that the model is less accurate at the higher confining stress at

which hydrostatic crushing, not accounted for in this model, becomes significant. From these results it is
suggested that, in triaxial cell terms, the model maintains reasonable accuracy up to confining stresses of

one and half times the uniaxial compressive strength.
8. Conclusions and closing remarks

The model framework and associated conditions derived for ensuring thermodynamic validity are ad-

equate for the development of a plastic directional-damage-contact model for concrete.

The new total–local consistency condition is effective at rigorously maintaining the local and global

constitutive relationships as well as the stress transformation relationships.

The relatively simple functions used in the local POD model allow the accurate simulation of direct

tension fracture behavior. Furthermore, the incorporation of a contact model on damaged PODs enables

crack closure, shear contact and aggregate interlock behavior to be simulated with reasonable accuracy.
The frictional hardening plasticity component is adequate for simulating the compressive behavior of

concrete up to confining stresses of approximately 1.5 times the uniaxial compressive strength (in triaxial

cell terms).
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It has been proved for certain restricted cases that the model satisfies the second law of thermodynamics,

and furthermore for other cases it has been demonstrated that for parameter ranges typical for structural

concrete the model does always predict non-negative dissipation.

Two particular future developments to the model are planned, as follows

• an optional closed yield surface with curved meridians which is able to simulate crushing effects at high
triaxial confinements

• frictional behavior in the crack plane model (as in Jefferson, 2002b) to simulate crack unloading/reload-

ing hysteretic effects, although again this is intended to be a model option.
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Appendix A

This appendix presents details of the local and global stress and strain vectors, transformation rules and

elastic constitutive matrices.

The POD, along with its defining local and global coordinate systems, are shown in Fig. 14.
The local stresses are related to global by the following transformation
si ¼ Nir ðA:1Þ
where i presents the POD number.
s ¼ sr ss st½ �T and r ¼ rxx ryy rzz sxy syz sxz½ �T
N ¼
r2d1 r2d2 r2d3 2rd1rd2 2rd2rd3 2rd1rd3
s2d1 s2d2 s2d3 2sd1sd2 2sd2sd3 2sd1sd3
t2d1 t2d2 t2d3 2td1td2 2td2td3 2td1td3

2
4

3
5

rd1, rd2, rd3 are the x, y, z components of the unit vector rd, normal to the POD surface, and similarly sd and

td are the in-plane vectors. sd is generated in the same way that Hasegawa (1995) generated shear directions
for micro-planes, in that the directions are chosen orthogonal to rd and to each of the reference axes in turn,
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i.e. for plane 1 sd is orthogonal to z, for plane 2 sd is orthogonal to y etc. td is then made orthogonal to r
and s.

When applied as direction subscripts to e and s, the d subscript on rd, sd and td is dropped.

The local stresses are related to the normal and principal shearing stresses on the POD as follows,
rn ¼ sr and s ¼ ðs2s þ s2t Þ
1=2 ðA:2Þ
Effective local strain and total global strain vectors are as follows
e ¼ er es et½ �T and e ¼ exx eyy ezz cxy cyz cxz
� 
T ðA:3Þ
The global stress–elastic strain relationships are given by
r ¼ Deee ðA:4Þ

ee ¼ Cer ðA:5Þ
in which De and Ce are the standard 6 · 6 matrices of elastic constants in stiffness and compliance form

respectively.

The local elastic relationships are given by
s ¼ DLee and ee ¼ CLs ðA:6Þ
where
DL ¼
En 0 0

0 Es 0

0 0 Es

2
4

3
5 and CL ¼

1=En 0 0

0 1=Es 0

0 0 1=Es

2
4

3
5

References

Abu-Lebeh, M., Voyiadjis, G.Z., 1993. Plasticity-damage model for concrete under cyclic multiaxial loading. J. Eng. Mech. ASCE

119 (7), 1465–1484.

ACI Committee 446, 1998. Finite element analysis in concrete structures. ACI report 446.3R-97.

Armero, F., Oller, S., 2000. A general framework for continuum damage models. I: Infinitesimal plastic damage models in stress space.

Int. J. Solids Struct. 37, 7409–7436.

ASCE Task Committee on Finite Element Analysis of Reinforced Concrete Structures, 1982. Finite element analysis of reinforced

concrete structures. ASCE.

Bazant, Z.P., Caner, F.C., Carol, I., Adley, M.D., Akers, S.A., 2000. Micro-plane model M4 for concrete. I: Formulation with work

conjugate deviatoric stress. J Eng. Mech. ASCE 126 (9), 944–953.



5998 A.D. Jefferson / International Journal of Solids and Structures 40 (2003) 5973–5999
Bazant, Z.P., Jirasek, M., 2002. Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Eng. Mech. ASCE

128 (11), 1119–1149.

Bazant, Z.P., Oh, B.H., 1983. Crack band theory for fracture in concrete. Mater. Struct. 16, 155–177.

Buyukozturk, O., 1977. Non-linear analysis of reinforced concrete. Comput. Struct. 7, 149–156.

Carol, I., Jirasek, M., Bazant, Z.P., 2001a. A thermodynamically consistent approach to micro-plane theory. Part 1: Free energy and

consistent microplane stresses. Int. J. Solids Struct. 38, 2921–2931.

Carol, I., Rizzi, E., Willam, K., 2001b. On the formulation of anisotropic elastic degradation. I: Theory based on a pseudo-logarithmic

damage tensor rate, and II: Generalized pseudo-Rankine model for tensile damage. Int. J. Solids Struct. 38, 491–546.

Cervera, M., Hinton, E., Hassan, O., 1987. Non-linear analysis of reinforced concrete plate and shell structures using 20-noded

isoparametric brick elements. Comput. Struct. 25 (6), 845–869.

Comi, C., Perego, U., 2001. Fracture energy based bi-dissipative damage model for concrete. Int. J. Solids Struct. 38, 6427–6454.

Crisfield, M.A., Wills, J., 1989. The analysis of reinforced-concrete panels using different concrete models. J. Eng. Mech. ASCE 15 (3),

578–597.

de Borst, R., Nauta, P., 1985. Non-orthogonal cracks in a smeared finite element model. Eng. Comput. 2, 35–46.

de Borst, R., 1986. Computational aspects of smeared crack analysis. In: Hinton, E., Owen, D.R.J. (Eds.), Computational Modeling of

Reinforced Concrete. Pineridge Press, Swansea, pp. 44–83.

di Prisco, M., Mazars, J., 1996. Crush-crack: a non-local damage model for concrete. Mech. Cohes. Frict. Mater. 1, 321–347.

Ekh, M., Runesson, K., 2000. Bifurcation results for plasticity coupled to damage with MCR-effect. Int. J. Solids Struct. 37, 1975–

1996.

Este, G., Willam, K., 1994. Fracture energy formulation for inelastic behavior of plain concrete. J. Eng. Mech. ASCE 120 (9), 1983–

2011.

Feenstra, P.H., de Borst, R., 1995. A plasticity model and algorithm for mode-I cracking in concrete. Int. J. Numer. Meth. Eng. 38,

2509–2529.

Han, D.J., Chen, W.F., 1987. Constitutive modeling in the analysis of concrete structures. J. Eng. Mech. ASCE 113 (4), 577–593.

Hansen, N.R., Schreyer, H.L., 1994. A thermodynamically consistent framework for theories of elastoplasticity coupled with damage.

Int. J. Solids Struct. 31 (3), 359–389.

Hasegawa, T., 1995. Enhanced micro-plane concrete model. In: Proceedings of FAMCOS2. Wittmann, F.H. Aedificatio, Germany,

pp. 857–870.

Hordijk, D.A., 1991. Local approach to fatigue of concrete. Ph.D. Thesis, Delft University of Technology, The Netherlands.

Jefferson, A.D., 2002a. A constitutive model for aggregate interlock on formed crack planes. Int. J. Numer. Anal. Meth. Geomech. 26,

1–21.

Jefferson, A.D., 2002b. Tripartite cohesive crack model. J. Eng. Mech. ASCE 128 (6), 644–653.

Jefferson, A.D., 2003. Craft––a plastic-damage-contact model for concrete. II. Model implementation with implicit return mappings

algorithm and consistent tangent matrix. Int. J. Solids Struct. in this issue.

Karihaloo, B.L., Jefferson, A.D., 2001. Looking into concrete. Mag. Concr. Res. 53 (2), 135–147.

Klisinski, M., Mroz, Z., 1988. Description of inelastic deformation and degradation of concrete. Int. J. Solids Struct. 24 (4), 391–416.

Kotsovos, M.D., Newman, J.B., 1979. A mathematical description of the deformable behavior of concrete under complex loading.

Mag. Concr. Res. 31, 77–90.

Krajcinovic, D., 1996. Damage Mechanics. Elsevier.

Kroplin, B., Weihe, S., 1997. Aspects of fracture induced anisotropy. In: Proceedings of the 5th International Conference on

Computational Plasticity (COMPLAS5), Barcelona. pp. 255–279.

Kupfer, H.B., Hilsdorf, H.K., Rusch, H., 1969. Behavior of concrete under biaxial stresses. J. ACI 66 (8), 656–666.

Lee, J., Fenves, G.L., 1998. Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. ASCE 124, 892–900.

Lubiner, J., Oliver, J., Oller, S., Onate, E., 1989. A plastic-damage model for concrete. Int. J. Solids Struct. 25 (3), 299–326.

Luccioni, B., Oller, S., Danesi, R., 1996. Coupled plastic-damaged model. Comput. Meth. Appl. Mech. Eng. 129, 81–89.

Meschke, G., Lackner, R., Mang, H.A., 1998. An anisotropic elastoplastic-damage model for plain concrete. Int. J. Numer. Meth.

Eng. 42, 703–727.

Oliver, J., 1990. A consistent characteristic length for smeared crack models. Int. J. Numer. Meth. Eng. 28, 461–474.

Ortiz, M., 1985. A constitutive theory for the inelastic behavior of concrete. Mech. Mater. 4, 67–93.

Ortiz, M., Simo, J.C., 1986. An analysis of a new class of integration algorithms for elastoplastic constitutive relations. Int. J. Numer.

Meth. Eng. 23, 353–366.

Owen, D.R.J., Figueriras, J.A., Damjanic, F., 1983. Finite element analysis of reinforced and prestressed concrete structures including

thermal loading. Comput. Meth. Appl. Mech. Eng. 41, 323–366.

O�zzbolt, J., Li, Y.-J., Koar, I., 2001. Micro-plane model for concrete with relaxed kinematic constraint. Int. J. Solids Struct. 38, 2683–

2711.

Petrangeli, M., Ozbolt, J., 1996. Smeared crack approaches––Material modeling. J. Eng. Mech. ASCE 122 (6), 545–554.

Reinhardt, H.W., 1984. Fracture mechanics of an elastic softening material like concrete. Heron 29 (2), 1–42.



A.D. Jefferson / International Journal of Solids and Structures 40 (2003) 5973–5999 5999
Rots, J.G., 1988. Computational modeling of concrete fracture. Ph.D. Thesis, Delft University of Technology, The Netherlands.

Saenz, L.P., 1964. Discussion of �Equation for the stress–strain curve for concrete� by Desai and Krishnan. J. ACI 61 (9), 1229–1235.

Simo, J.C., Ju, J.W., 1987. Relative displacement and stress based continuum damage models. I: Formulation. Int. J. Solids Struct.

23 (7), 821–840.

Simo, J.C., Taylor, R.L., 1985. Consistent tangent operators for rate independent elasto-plasticity. Comput. Meth. Appl. Mech. Eng.

48, 101–118.

Walraven, J.C., Reinhardt, H.W., 1981. Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete

subjected to shear loading. Heron 26 (1A).

Weihe, S., Kroplin, B., de Borst, R., 1998. Classification of smeared crack models based on material and structural properties. Int. J.

Solids Struct. 35 (12), 1289–1308.

Willam, K., Warnke, E., 1975. Constitutive models for triaxial behavior of concrete. In: Proceedings of the International Association

of Bridge Structure Engineering, Report 19, Zurich, Switzerland. pp. 1–30.

van Mier, J.G.M., 1997. Fracture processes of concrete. CRC Press, Boca Raton, FL.

Yang, B.L., Dafalias, Y.F., Hermann, L.R., 1985. A bounding surface plasticity model for concrete. J. Eng. Mech. ASCE 111 (3),

359–380.


	Craft--a plastic-damage-contact model for concrete. I. Model theory and thermodynamic considerations
	Introduction
	Theoretical framework
	Overall framework
	Thermodynamic restrictions

	Model components
	Local damage-contact relationships
	Plasticity component
	Triaxial behavior
	Yield function
	Plastic potential and flow rule
	Hardening/softening relationships


	Constitutive matrix and stress update computations
	Tangent constitutive matrix
	Stress recovery
	Overall approach
	Local strain update
	Update algorithm


	Implications of different forms of local elastic constitutive matrix
	Thermodynamic assessment
	Plasticity component
	Damage-contact component
	Open state
	Closed mode
	General interlock state case
	Plane-stress case with Clsf option 3
	3D case with Clsf option 3
	General case with Clsf option 2


	Final remarks

	Single point stress-strain examples
	Conclusions and closing remarks
	Acknowledgements
	Appendix A
	References


